
Java Sockets
network programming

Patrice Torguet
IRIT/VORTEX

Paul Sabatier University

Schedule

Introduction to BSD Sockets

Transport Protocols

Java socket programming

Conclusion

BSD Sockets

BSD (Berkeley Software Distribution) is a
UNIX like OS developed by Berkeley
University since 1977

It introduced Sockets (version 4.3 de BSD -
1983)

Sockets are now in every OS

BSD Sockets
A socket is an abstract object that represents
the end-points of a communication channel

The socket term comes from an electricity/
phone socket metaphor

Application

API Sockets

RTC Réseau
électrique

Réseau
informatique

Telephone
Network

Electricity
Network

Computer
Network

Socket API

BSD Sockets
Sockets are also an API for:

Manipulating data related to communication
(source and destination addresses, port
numbers...)

Creating a communication channel (if it is needed)

Sending and receiving application level PDU
(protocol data units)

Controlling and customizing communication

BSD Sockets
BSD sockets allow both

Process to process communications
(AF_UNIX domain - not available with Java
or on Windows e.g.)

Networked communications

using TCP/IP (AF_INET domain)

or other protocol suites (e.g. ATM)

BSD Sockets

Sockets can be an abstraction related to

The network

for TCP/IP a socket is a quintuplet: local IP @,
local port, remote IP @, remote port, transport
protocol (TCP or UDP)

Computer programming

a socket can be manipulated like a file
descriptor (similarly to FIFOs and pipes)

Transport Protocols

Using the AF_INET domain you can communicate

with virtual channels (STREAM)

uses TCP connections

with independent messages (DGRAM)

uses UDP datagrams

allows for point to point or multipoint delivery
(broadcast / multicast)

Transport Protocols
Port numbers

On one computer you can have several
applications that use the network at the same
time

Problem: how can we identify with which
application we want to talk

Solution: each application is identified by a
unique id (unique for a computer and for a
protocol) called a port number (16 bits integer -
65535 different ports - 0 is not used)

Transport Protocols
Several types of port numbers

System or well known ports (1-1023) - OS reserved
(example 80 - web servers)

User or registered ports (1024- 49152) - reserved to
specific applications (like the first ones) registered with
IANA (Internet Assigned Numbers Authority -
www.iana.org) (example 26000 - Quake)

Private or dynamic ports (others) - used by
unregistered applications and TCP clients

http://www.iana.org
http://www.iana.org

IP: Internet Protocol
Manages

Addressing (IP @) and routing in the Internet

Fragmentation in order to adapt to the low-level
network protocols maximum PDU size (MTU)

Attention: this increases loss probability (if a
fragment is lost, the whole datagram is lost)

TTL: maximum number of routers that the datagram
can cross

STREAM / TCP Sockets

Manages:

a bidirectional byte stream which is

Reliable (no loss, no duplication) and ordered

“Virtual connection” between both applications (we
can detect connection failures)

The most used protocol today (mail, web, ftp...)

Need to code 3 phases: connection, dialogue, dis-
connection

DGRAM / UDP Sockets

Manages:

Independent message transfers using UDP datagrams

Non reliable and non ordered: best effort

Faster than TCP

Mostly used by multimedia applications (audio,
video, games) and for LAN only applications

Send/receive messages with a socket

DGRAM / UDP Sockets

Advantages

Simpler protocol (no virtual connections, no reliability
management) and therefore less CPU hungry

Faster protocol (no order management and congestion
avoidance): messages are sent directly (no need to wait
when the reception window is full) and delivered directly
to the application (no reordering)

DGRAM / UDP Sockets

Advantages

OSes limit the number of simultaneous TCP connections

UDP hasn’t this problem because a UDP socket can
send/receive to/from several destinations. It is
therefore more adapted to large scale applications (P2P
for example)

Moreover you can broadcast/multicast with UDP (not
with TCP)

DGRAM / UDP Sockets

Disadvantages

Security problem: a UDP socket can receive data from
any computer/application

Therefore, most firewalls are configured to block
incoming UDP traffic

TCP and the client/server model
Create and bind the listening socket

Start the service

Wait for connection requests, accept
them and create a service socket

Send/Receive data using the service
socket

Close the service socket

Close the listening socket

Create (and bind) the socket

Build the server address/port

Connection request

Send/Receive data

Close the socket

Failure Success

Create + bind the listening
socket

B Port

B IP @

listening
socket

Local @ = B IP @ or Any
Local port = B port

Remote @ = Any
Remote port = 0
Protocol = TCP

listening s.

Create + bind client socket

B Port

B IP @

listening s.

@ loc = @ IP A
port loc = port A

@ dist = Any
port dist = 0
proto = TCP

listening s.
Local @ = B IP @ or Any

Local port = B port
Remote @ = Any
Remote port = 0
Protocol = TCP

client
socket

A Port
(auto)client

socket

A IP @

Connection request

B Port
A Port
(auto)

client
socket

loc @ = A IP @
loc port = A port

rem @ = B IP @
rem port =B port

proto = TCP

s: @IPA
d: @IPB

s: port A
d: port B

SYN

IP datagram

TCP segment

Local @ = B IP @ or Any
Local port = B port

Remote @ = Any
Remote port = 0
Protocol = TCP

B IP @

listening s.

A IP @

client
socket

listening s.

Connection Acceptation

s. service

loc @ = B IP @
loc port = B port

rem @ = A IP @
rem port = A port

proto = TCP

service s.

@IPB
@IPA

port B
port A

SYN

@IPA
@IPB

port A
port B

ACK

ACK

Local @ = B IP @ or Any
Local port = B port

Remote @ = Any
Remote port = 0
Protocol = TCP

B IP @

listening s.

A IP @

client
socket

client
socket

loc @ = A IP @
loc port = A port

rem @ = B IP @
rem port =B port

proto = TCP

listening s.

Communication

service s.

service s.

@IPB
@IPA

port B
port A

@IPA
@IPB

port A
port B

message

ACK

Local @ = B IP @ or Any
Local port = B port

Remote @ = Any
Remote port = 0
Protocol = TCP

B IP @

listening s.

A IP @

client
socket

client
socket

loc @ = A IP @
loc port = A port

rem @ = B IP @
rem port =B port

proto = TCP

listening s.

loc @ = B IP @
loc port = B port

rem @ = A IP @
rem port = A port

proto = TCP

Java: TCP Server

java.net.ServerSocket class
listening sockets

most used constructor allows to chose the
port (or 0 for OS automatic port)

Other constructors exist that let you
choose the local IP @ and/or the size of the
listening queue (see the java doc for the
java.net package)

Create and bind the listening socket

Start the service

Wait for connection requests, accept
them and create a service socket

Send/Receive data using the service
socket

Close the service socket

Close the listening socket

import java.net.ServerSocket;
import java.net.Socket;
import java.io.IOException;
import java.io.DataInputStream;
import java.io.DataOutputStream;

ServerSocket listeningSock; // ServerSocket declaration

// constructs a server socket and chose a port number
try {
 listeningSock = new ServerSocket(13214);
}
catch(IOException ioe) {
 System.out.println("Server socket creation error: " + ioe.getMessage());
 return;
}

Java: TCP Server

accept method

Waits for a connection request

When we accept a request, it
creates a service socket (Socket
class instance)

Socket is the type used for service and
client sockets

Create and bind the listening socket

Start the service

Wait for connection requests, accept
them and create a service socket

Send/Receive data using the service
socket

Close the service socket

Close the listening socket

Java: TCP Server

Socket serviceSock; // service socket declaration

// We call accept on the listening socket to wait for connection requests
// when a conn. request is received a new Socket object is created
// this object manages connection with the client which sent the request

while(true) {
 try {
 serviceSock = listeningSock.accept();
 }
 catch(IOException ioe) {
 System.out.println("Accept error: " + ioe.getMessage());
 break;
 }
 /* ... Manage connection with the client ... */
}

Java: TCP Server

Uses java input/output classes (java.io
package)

Methods : getOutputStream and
getInputStream of Socket

Return basic binary I/O streams that
we will be able to encapsulate in more
complex streams (BufferedReader,
BufferedWriter, DataInputStream,
DataOutputStream,
ObjectInputStream,
ObjectOutputStream...)

Create and bind the listening socket

Start the service

Wait for connection requests, accept
them and create a service socket

Send/Receive data using the service
socket

Close the service socket

Close the listening socket

Java: TCP Server

try{
 // Creates a data input stream that will work on the socket basic input stream
 DataInputStream iStream = new DataInputStream(serviceSock.getInputStream());

 // Reads a string an an integer. Those are received from the client.
 String helloString = iStream.readUTF();
 int three = iStream.readInt();
}
catch(IOException ioe) {
 System.out.println("Socket read error: " + ioe.getMessage());
}

Java: TCP Server

Java : TCP Serv
try{
 // Creates a data output stream which will work on the socket’s basic output stream
 DataOutputStream oStream = new DataOutputStream(

 serviceSock.getOutputStream());

 // Writes a string and a float. The socket sends them to the client.
 oStream.writeUTF("Hello!");
 oStream.writeFloat(3.14f);
}

catch(IOException ioe) {
 System.out.println("Socket write error: " + ioe.getMessage());
}

Java : TCP Serv

close method of Socket and
ServerSocket

code: sock.close() + try/catch
IOException

Create and bind the listening socket

Start the service

Wait for connection requests, accept
them and create a service socket

Send/Receive data using the service
socket

Close the service socket

Close the listening socket

Java : TCP Client
Socket class

Use one of the constructors

Each create the socket,
binds it and sends the
connection request to the
server

The most used one allows to
give the name of the
computer (or its IP @) and
the application port

Create (and bind) the socket

Build the server address/port

Connection request

Send/Receive data

Close the socket

Failure Success

Java : TCP Client
import java.net.Socket;
import java.io.IOException;
import java.io.DataInputStream;
import java.io.DataOutputStream;

Socket sock; // Client socket declaration

// Creates a socket and give the computer name and port for the server
try {
 sock = new Socket("marine.edu.ups-tlse.fr", 13214);
 // another solution:
 // sock = new Socket("10.5.4.1", 13214);
}
catch(IOException ioe) {
 System.out.println("Connection creation error: "
 + ioe.getMessage());
 return;
}

Sending/receiving with UDP

Create and bind the socket

Build the receiver address

Sending/receiving data

Close the socket

Create and bind the socket

Receiving data

Close the socket

Create + bind socket

B Port

B IP @A IP @

A Port
socket socket

local @ = B IP @ ou Any
local port = B port

remote @ = Any
remote port = 0

proto = UDP

local @ = A IP @ ou Any
local port = A port

remote @ = Any
remote port = 0

proto = UDP

Communication
@ IP B@ IP A

socket socket

@IPB
@IPA

port B
port A

@IPA
@IPB

port A
port B

message

message

No connection
Usually you give the destination

address and port each time
you send something

local @ = B IP @ ou Any
local port = B port

remote @ = Any
remote port = 0

proto = UDP

local @ = A IP @ ou Any
local port = A port

remote @ = Any
remote port = 0

proto = UDP

DatagramSocket class

Creates a UDP socket and binds it
to a local port (and IP @)

Constructors:

default constructor (OS
choses the port)

choice of port

choice of port and local IP
address (if the computer has
several IP addresses)

Sending/receiving with UDP

Create and bind the socket

Build the receiver address

Sending/receiving data

Close the socket

import java.net.DatagramSocket;
import java.io.IOException;
import java.io.ByteArrayInputStream;
import java.io.ByteArrayOutputStream;
import java.io.DataInputStream;
import java.io.DataOutputStream;

DatagramSocket sock; // Datagram socket declaration

try {
 sock = new DatagramSocket(13214); // Binds to UDP 13214 port
}

catch(IOException ioe) {
 System.out.println("Socket creation error: " + ioe.getMessage());

 return;
}

Sending/receiving with UDP

Sending/receiving with UDP

InetAddress class

Manages IP r4 and r6 addresses
(using two derived classes
Inet4Address and Inet6Address)

3 static methods :

InetAddress getByName(String s) :
name resolving or IP address parsing

InetAddress getLocalHost() : local IP
address

InetAddress[] getAllByName(String
name) : gives all addresses associated
to a name

Create and bind the socket

Build the receiver address

Sending/receiving data

Close the socket

DatagramPacket class

Manages a UDP datagram that will be sent
or received

2 main constuctors

Sending: 4 parameters (data, length,
IP@, port)

Receiving: 2 parameters (buffer,
length of buffer)

Several get/set Methods for : data, length
(of actually received data), remote IP @ and
port, local IP @ and port (+ and offset)

Methods send/receive of DatagramSocket

Sending/receiving with UDP

Create and bind the socket

Build the receiver address

Sending/receiving data

Close the socket

Sending with UDP
try{
 // Prepare IP @ and port
 InetAddress destAddr = InetAddress.getByName("10.25.43.9");
 int destPort = 13214;
 // You can use a ByteArrayOutputStream to format data
 ByteArrayOutputStream boStream = new ByteArrayOutputStream();
 DataOutputStream oStream = new DataOutputStream(boStream);
 oStream.writeUTF("Hello!"); // Write some data on the stream
 oStream.writeInt(3);
 byte[] dataBytes = boStream.getByteArray(); // Convert the stream as a byte array
 DatagramPacket dgram = // Create a DatagramPacket
 new DatagramPacket(dataBytes, dataBytes.length, destAddr, destPort)
 sock.send(dgram);
}
catch(IOException ioe) {
 System.out.println("Socket send error: " + ioe.getMessage());
}

Receiving with UDP
try{
 // Build structures to hold incoming information
 byte[] buffer = new byte[255];
 DatagramPacket dgram = new DatagramPacket(buffer, buffer.length);

 // Receive the incoming datagram
 sock.receive(dgram); // Sender information available in
 // dgram.getAddress() and dgram.getPort()

 // Unpack the Datagram
 ByteArrayInputStream biStream = new ByteArrayOutputStream();
 DataInputStream iStream = new DataInputStream(biStream);
 String helloString = iStream.readUTF();
 int three = iStream.readInt();
}
catch(IOException ioe) {
 System.out.println("Socket receive error: " + ioe.getMessage());
}

UDP Broadcasting

Almost identical to UDP/IP unicast

But you must use a broadcast address as the
destination address of the datagram.

Note: datagram sockets can receive both unicast
and broadcast datagrams

InetAddress destAddr = InetAddress.getByName(“255.255.255.255”)

UDP Multicasting
In order to multicast you should:

Use the MulticastSocket instead of the
DatagramSocket class (MS extends DS)

Give a multicast IP address as the destination
address of your datagram

Example (IPr4 address) 225.0.0.1

You can also choose the TTL to limit the
multicast outreach

InetAddress destAddr = InetAddress.getByName(“225.0.0.1”)

sock.setTimeToLive(1);
// then you send your datagram as before
sock.send(dgram);

UDP multicast reception

In order to receive you must subscribe to the IP
multicast address like this:

You can unsubscribe later on using:

sock.joinGroup(InetAddress.getByName(“225.0.0.1”));

sock.leaveGroup(InetAddress.getByName(“225.0.0.1”));

Conclusion
Network programming with sockets is easy

But beware of asynchronism

Receiving is always a blocking call

For TCP, waiting for a connection and
even sometimes sending are blocking
calls

Your solutions: threads or NIO select
operations

