
Peer 2 Peer
Massively Multiuser VEs

Patrice Torguet
torguet@irit.fr
Université Paul Sabatier

mardi 27 octobre 2009

mailto:torguet@irit.fr
mailto:torguet@irit.fr

Schedule part 1 P2P

 Introduction
 Problems of P2P overlays
 Protocol operations
 Bootstrapping the P2P overlay
 Unstructured P2P
 Structured P2P and DHTs

mardi 27 octobre 2009

Introduction

 The precursor: Napster
– File sharing using P2P transfers
– But: one server indexed everything (peers and files) =>

subject to failure and... lawsuit
 Current applications:

– File sharing (eMule, Bittorrent...)
– Video conferencing (Skype...)
– Distributed computing (SETI@home, bioinformatics...)

 Future applications:
– Sensor networks
– Distributed file systems
– MMVEs

mardi 27 octobre 2009

Introduction

 Characteristics:
– fully distributed (no server) => Full P2P
– heterogenous resources (P2P ≠ Grid computing)
– highly dynamic => Peers can fail

 Similar to:
– Ad-hoc networking
– Grid computing

mardi 27 octobre 2009

Problems of P2P overlays

 Main problem: churning
– Peers come and go
– Need to maintain connectivity

 Other problems:
– Security (see for example: TOR)
– Efficient routing (P2P overlay structure ≠ Internet

structure)
– Firewall crossing

mardi 27 octobre 2009

Protocol operations

 Network oriented
– Join: a peer joins the P2P overlay
– Leave: a peer leaves the overlay
– Lookup/query: messages used to find peers (lookup) or

data (query)
 Data oriented

– Put: new data is available on the overlay
– Get: retrieve data
– Delete: previously available data is now unavailable

mardi 27 octobre 2009

Bootstrapping the P2P overlay

 Need to find an existing peer to connect to
– Reliable peers: well known peers that work 24/7
– Cached list: keep a cache of previously known peers IPs
– IP broadcast/multicast: often only working on a LAN
– Host cache service: independent well known name server
– Manual: user supplied list of IP addresses (e.g. found on

the web)

mardi 27 octobre 2009

Unstructured P2P

 Simple approach
– random graph of peers
– use flooding or random exploration to find data/peers

 Can be very inefficient
 How do you maintain connectivity ?

mardi 27 octobre 2009

Gnutella (newtella)

 Connection using a list of well-known peers
 Random connectivity using TCP
 Messages have unique IDs and the ids and origins

are kept in local caches (to avoid re-propagation and
to allow back propagation)

 PING/PONG messages used to find other peers
– PING sent to current neighbors and forwarded
– PONG are back propagated and contain IP addresses

mardi 27 octobre 2009

Gnutella: example overlay

Figures
courtesy of
Aaron Harwood
NICTA

mardi 27 octobre 2009

Gnutella: PING/PONG

Figures
courtesy of
Aaron Harwood
NICTA

mardi 27 octobre 2009

Gnutella: PING/PONG

Figures
courtesy of
Aaron Harwood
NICTA

mardi 27 octobre 2009

Gnutella: PING/PONG

Figures
courtesy of
Aaron Harwood
NICTA

mardi 27 octobre 2009

Gnutella: PING/PONG

Figures
courtesy of
Aaron Harwood
NICTA

mardi 27 octobre 2009

Gnutella: PING/PONG

Figures
courtesy of
Aaron Harwood
NICTA

mardi 27 octobre 2009

Gnutella: PING/PONG

Figures
courtesy of
Aaron Harwood
NICTA

mardi 27 octobre 2009

Gnutella: PING/PONG

Figures
courtesy of
Aaron Harwood
NICTA

mardi 27 octobre 2009

Gnutella: PING/PONG

Figures
courtesy of
Aaron Harwood
NICTA

mardi 27 octobre 2009

Gnutella: PING/PONG

Figures
courtesy of
Aaron Harwood
NICTA

mardi 27 octobre 2009

Gnutella: new connections

Figures
courtesy of
Aaron Harwood
NICTA

mardi 27 octobre 2009

Gnutella (newtella)

 QUERY messages are flooded
 HIT messages are back propagated
 GET messages are used to directly download data
 PUSH messages are used to require data to be sent

back (used to cross firewalls)

mardi 27 octobre 2009

Gnutella: QHGP

Figures
courtesy of
Aaron Harwood
NICTA

mardi 27 octobre 2009

Gnutella: Queries are flooded

Figures
courtesy of
Aaron Harwood
NICTA

mardi 27 octobre 2009

Gnutella: Floods cross firewalls

Figures
courtesy of
Aaron Harwood
NICTA

mardi 27 octobre 2009

Gnutella: Hits come back from some
nodes

Figures
courtesy of
Aaron Harwood
NICTA

mardi 27 octobre 2009

Gnutella: Hits are back-propagated

Figures
courtesy of
Aaron Harwood
NICTA

mardi 27 octobre 2009

Gnutella: Get to public IP works

Figures
courtesy of
Aaron Harwood
NICTA

mardi 27 octobre 2009

Gnutella: Get to public IP works

Figures
courtesy of
Aaron Harwood
NICTA

mardi 27 octobre 2009

Gnutella: Get to private IP fails

Figures
courtesy of
Aaron Harwood
NICTA

mardi 27 octobre 2009

Gnutella: Need to use PUSH

Figures
courtesy of
Aaron Harwood
NICTA

mardi 27 octobre 2009

Gnutella: Need to use PUSH

Figures
courtesy of
Aaron Harwood
NICTA

mardi 27 octobre 2009

Gnutella: Need to use PUSH

Figures
courtesy of
Aaron Harwood
NICTA

mardi 27 octobre 2009

Gnutella (newtella)

 To optimize Gnutella super-peers (ultra peers) have
been introduced
– They have more bandwidth
– They index files for other nodes (and manage searching

on behalf of them)
– A peer can be connected to several super-peers (used for

super-peer fault tolerance)

– But flooding still exists between super-peers
– Super-peer promotion is done only at connection

mardi 27 octobre 2009

Gnutella: Super-peers

Figures
courtesy of
Aaron Harwood
NICTA

mardi 27 octobre 2009

Gnutella: Super-peers

Figures
courtesy of
Aaron Harwood
NICTA

mardi 27 octobre 2009

Gnutella: Super-peers

Figures
courtesy of
Aaron Harwood
NICTA

mardi 27 octobre 2009

Gnutella: Super-peers

Figures
courtesy of
Aaron Harwood
NICTA

mardi 27 octobre 2009

Gnutella: Super-peers

Figures
courtesy of
Aaron Harwood
NICTA

mardi 27 octobre 2009

Gnutella: Super-peers

Figures
courtesy of
Aaron Harwood
NICTA

mardi 27 octobre 2009

Gnutella: Super-peers

Figures
courtesy of
Aaron Harwood
NICTA

mardi 27 octobre 2009

Gnutella: Super-peers

Figures
courtesy of
Aaron Harwood
NICTA

mardi 27 octobre 2009

Gnutella: Super-peers

Figures
courtesy of
Aaron Harwood
NICTA

mardi 27 octobre 2009

Gnutella: Super-peers

Figures
courtesy of
Aaron Harwood
NICTA

mardi 27 octobre 2009

Gnutella: Super-peers

Figures
courtesy of
Aaron Harwood
NICTA

mardi 27 octobre 2009

Gnutella: Redundancy

Figures
courtesy of
Aaron Harwood
NICTA

mardi 27 octobre 2009

Gnutella (newtella)

 Other issues
– to avoid too much flooding, a TTL can be used but of

course there is no assurance that a file will be found
– if too many peers (super-peers) fail then partitions may

occur. But the power law assures that the system is fairly
robust to random fails

– IP addresses, associations, full path names are all visible.
Induced denial of service via fake push and fake pong
messages is possible. Fake content.

mardi 27 octobre 2009

ed2k

 eDonkey 2000 network is a P2P network with super-peers
(called servers) like gnutella but there are no connections
between super-peers

 Servers index files of their connected peers and allow peer to
search for files

 All download is done from peer to peer
 Peers are connected to several servers and learn more servers

through server lists exchanges
 The most popular client of the ed2k network is eMule

mardi 27 octobre 2009

ed2k

 the ed2k architecture manages
– searching files through keywords on the servers
– concurrent download of files from several peers
– partial sharing of files during download
– verification of downloaded data through hashes

mardi 27 octobre 2009

Bittorrent

 Bittorrent is a P2P network with lots of servers (in the sense
of ed2k) managing a set of peers interested in a file. Those
servers are called trackers.

 Trackers are found through the web or through the Kad
network

 The protocols favor peers that upload against peers that only
download (leechers) through choking
– Choking is a temporary refusal to send
– The peer might still be able to download later on

mardi 27 octobre 2009

Bittorrent

Figure
courtesy of E.
K. Lua et al.

mardi 27 octobre 2009

Bittorrent

Figure
courtesy of
Wikipedia

mardi 27 octobre 2009

Freenet

 Freenet is an anonymous network
– it provides a virtual distributed FS storing files

anonymously (and also freesites and chats)
– each peer provides a part of the storage space
– replication is used to make sure that data is not lost when

peers fail
– ciphering is used to make sure that data cannot be

modified by anyone but its author and to make sure data
is exchanged anonymously

– the architecture is fully distributed (like gnutella) but
Freenet choses where the data is stored

mardi 27 octobre 2009

Freenet

 GUIDs
– each file is associated a global unique id which is used as

a key to find the data
– ids are calculated using SHA-1 secure hash
– there are mainly two kinds of keys

 CHK (content hash keys) are hashed on the content of an
encrypted file and are used by freenet to locate a file

 SSK (signed subspace keys) are used by users to manage a set of
files. Only the owner of the SSK can write to the subspace while
it can be read by anyone. In fact a SSK points to a text file that
lists CHKs of the files in the subspace. They can be used to form
a hierarchy or to split big files.

mardi 27 octobre 2009

Freenet

 Freenet basically support two operations:
– PUT that sends the data to one peer that will store it. It

will then move or be replicated as required. The data will
be tied to a GUID (CHK or SSK).

– GET that, given a GUID, is forwarded through the
network to one peer that holds the data tied to it. The data
is sent back using back-propagation.

 Anonymity
– Messages sent on the network are encrypted for each pair

of peers that move them.
– Routing is only local and based on GUID, thus no peer

can tell if the next one (resp. previous one) is the final
receiver (resp. original sender) of the message

mardi 27 octobre 2009

Freenet: routing

 Routing tables store only GUIDs and the connected
peer that is supposed to be nearer to the data
– They are only local
– They are constructed dynamically
– At the beginning a peer is only connected to another peer

and it asks it everything
– When data is found all nodes that move it back to the

requester update their tables
– Freenet also uses path folding (i.e. two non connected

nodes that exchange data may connect to each other)
– Thus the network auto-organizes

mardi 27 octobre 2009

Freenet: routing

 Routing works as follows
– Each node is associated a location (L ∈ {0 and 1})
– The GUID of the request is translated into a number

between 0 and 1
– The request is first sent to the connected node which

location is nearest to the GUID number.
– Then Freenet uses greedy routing as follows

mardi 27 octobre 2009

Freenet: routing

Figure
courtesy of
Ian Clarke

mardi 27 octobre 2009

Freenet: routing

 Query requests are associated with HTL (hops to
live) values in order to avoid waiting for a long time

 When the data comes back along the network it may
be replicated

 Moreover the nodes locations will change due to
path folding (two nodes connected will have similar
location values)

mardi 27 octobre 2009

Freenet: routing

 When storing data:
– The request is sent along the network
– Either a node has already the data and the new data is

discarded. The original data comes back to the requester
and is thus cached on the path.

– Or the HTL will go down to 0. Then the data is sent to the
node which decremented HTL to 0. The data will also be
cached along the path.

mardi 27 octobre 2009

Structured P2P

 4 Research papers appeared roughly at the same time : CAN,
Chord, Pastry and Tapestry

 Those system exhibit almost the same features
– Data location is controlled (as in Freenet)
– But the P2P overlay structure is also controlled

 They support two main applicative methods which are
similar to Hashtables methods (hence the name DHT
distributed hash tables)
– PUT: puts some data in the system tied to a key
– GET: retrieve some data from the system given a key

mardi 27 octobre 2009

CAN

 The CAN (Content Addressable Network) architecture is
based on a mapping between the keys and a d-dimensional
Cartesian space managed as a multi-torus (d>1)

 Each peer is associated with a rectangular region of the d-
dimensional space and manages all data which keys map to
this region

 Each peer maintain connections with the peers which
manage neighboring regions

 Routing is simply done by choosing the neighbor that is
nearer to the destination key

mardi 27 octobre 2009

CAN

Figure courtesy of S.
Ratnasamy et al.

1’s neighbor set = {2,3,4,5}

8’s neighbor set = {22,2,5,11}

8

910

11

12
13

14

15

16

17
18 19 20 21 22

mardi 27 octobre 2009

CAN

 When a new peer joins the overlay
– it chooses a random point in space
– it connects to any peer in the CAN
– starting with this peer the CAN will route the join request

to the peer that manages the region which contains this
random point

– this last peer region will be cut in half and one subregion
will be given to the new peer. All data in this subregion
will be transmitted to the new peer

– the neighborhood will be updated

mardi 27 octobre 2009

CAN

Figure courtesy of S.
Ratnasamy et al.

After node 7 joins

1’s neighbor set = {2,3,4,7}

7’s neighbor set = {1,2,4,5}

mardi 27 octobre 2009

CAN

 When a peer leaves the overlay
– if the region of one neighbor can be merged with the

departing peer zone to produce a valid single zone, this
neighbor gets the new merged zone and all the data is
transfered

– if this isn’t possible then the neighbor whose zone is
smallest will get the zone and the data. Then the overlay
will be recomputed in background so that each peer as
only one valid region

– In both cases, neighbors will communicate to rebuild the
neighbor sets and connections

mardi 27 octobre 2009

CAN

 In order to manage crashes and data loss several realities
(each having its d-dimensional Cartesian space) can be setup
so that each data is present in the different realities on
different peers

 Thus if we have k realities, there will be k copies of all data
in the CAN

 The realities can be used to optimize routing (using the
cartesian distance to the key point) and/or to parallelize
requests

mardi 27 octobre 2009

Chord

 Chord uses consistent hashing to assigns keys to its peers
– each peers receives roughly the same number of keys
– when a peer leaves or join there is a minimal number of

transfers
 The consistent hash function assigns each key a m-bit value

using SHA-1
 Each peer is also associated a m-bit value called its identifier

using SHA-1 hashing of its IP address
 Each key is associated to the first peer whose id is equal to

or follows (the identifier of) k. This peer is called the
successor of k. If ids are drawn on a circle from 0 to 2m-1,
successor(k) is the first node clockwise from k.

mardi 27 octobre 2009

Chord

Figure courtesy of I.
Stoica et al.

0, 1 and 3 are nodes
1, 2 and 6 are keys

mardi 27 octobre 2009

Chord

 When a node n joins the network some keys owned by n’s
successor will now be managed by n

 When a node n leaves the network all its keys will be moved
to n’s successor

 Each peer in the network needs to know how to contact its
successor

 Lookup queries are passed along the Chord-ring from
successors to successors up to the time where successor(n) >
k then k is stored on successor(n)

 The data is then moved back to the requester using back
propagation

mardi 27 octobre 2009

Chord

Figure
courtesy of E.
K. Lua et al.

A Chord-ring
for m = 6

mardi 27 octobre 2009

Chord

 To optimize routing, each node has a routing table (called a
finger table) containing at most m entries
– entry i stores successor(n+2i-1) where n is the node’s id
– its stores both the node id and its IP address and port

number
 The finger tables need to be updated each time a node joins

or leaves
– This is managed by a background process

 When a peer fails it is possible that a node no longer knows
its successor
– To avoid this, each node stores the lists of its r successors

mardi 27 octobre 2009

Chord

Figure
courtesy of E.
K. Lua et al.

A Chord-ring
for m = 6

mardi 27 octobre 2009

Pastry

 Pastry and Tapestry are similar
 They are both based on Plaxton-like prefix routing (a

Plaxton mesh is a distributed data structure optimized to
support a network overlay for locating named data objects
which are connected to one root peer - both Pastry and
Tapestry actually uses several roots to be more fault tolerant
and scalable)

mardi 27 octobre 2009

Pastry

 Pastry uses an external routing metric to optimize routing
(this can be latency - using ping - number of hops - using
traceroute - bandwidth...)

 It is a DHT where keys and node ids are 128 bit unsigned
integers organized on a ring like Chord

 Node ids are chosen randomly and uniformly so that peers
which are adjacent in node ids are geographically diverse

 The overlay is based on peers maintaining 3 data structures:
– Leaf nodes set
– Neighborhood set
– Routing table

mardi 27 octobre 2009

Pastry

 Leaf set: L/2 nodes before and after the node N on the ring
 Neighborhood set: M closest peers based on the metric. It is

not used directly but allows to maintain information in the
routing table

 Routing table contains one entry for each address block
assigned to it
– Address blocks are formed by splitting the 128 bit integers in blocks of b bits

(usually 4 bits => 32 hexadecimal digits)
– This partitions the addresses into levels. Level 0 contains 0 common digit

with the node’s address, Level 1 contains 1 common digit...
– The table contains the address of the closest known peer for each digit at

each address level (except for the digit of the node itself at any level). It
typically contains 15 contacts per level.

mardi 27 octobre 2009

Pastry

Figure
courtesy of E.
K. Lua et al.

mardi 27 octobre 2009

Pastry

Figure
courtesy of E.
K. Lua et al.

mardi 27 octobre 2009

Pastry

 A packet can be routed on the ring towards the peer that is
nearest to the destination address (there can be no peers at
the exact address)

 Routing works as follows:
– First search in the leaf set to find the dest address
– If this fails, use the routing table to find a node that

matches better the dest address (ie it has at least x digits
in common with the dest address with x > y: the number
of digits that the current node has in common to the dest
address)

– If this fails (either there is no one that matches better or
the peer that matches better is dead), send the packet to
someone in the leaf set which is nearer to the address

mardi 27 octobre 2009

Pastry

Figure
courtesy of E.
K. Lua et al.

mardi 27 octobre 2009

Pastry

 When peer fails, the peers that use them for routing or for
maintaining the contact lists use peers in their neighborhood
and leaf sets to find a replacement peer

mardi 27 octobre 2009

Kademlia

 Kademlia is a DHT using 160-bits keys and NodeIDs (both
are taken in the same space as Chord and Pastry)

 However it uses XOR has a distance metric for routing.
XOR has the following geometric (non euclidean) distance
features:
– XOR(a,a) = 0 and XOR(a,b)>0 if a≠b
– XOR(a,b) = XOR(b,a)
– XOR(a,b)+XOR(b,c) ≥ XOR(a,c)

 Most interestingly as XOR(a,b) = XOR(b,a) Kademlia’s
routing is symetric and therefore nodes learn information
from the nodes that sends them messages which is not the
case in Chord

mardi 27 octobre 2009

Kademlia

 Routing in Kademlia uses the concept of k-buckets
 K-buckets are lists of at most k nodes (k can be 20)
 Each node has 160 such lists (one for each bit in the address

space)
 The n-th k-bucket contains nodes that have bits 0 to n-1

equal to the node id an the n-th bit different
 A lot of the k-buckets are empty when n increases towards

160 as the key space is smaller and smaller. For n=0 the key
space is the half of the whole k-space...

 The following tree shows 4 k-buckets for a node starting
with address 0011

mardi 27 octobre 2009

Kademlia
Figure courtesy of P.
Maymounkov et al.

mardi 27 octobre 2009

Kademlia

 When routing to a key, a node sends messages to α (typically
3) nodes that are nearer to the destination key. α allows
parallelizing the lookup so that it doesn’t stop due to failed
nodes

 The nodes are selected from the non empty k-bucket that is
nearest to the key

 If there are less than α nodes in the k-bucket then the system
takes nodes from a k-bucket that is farther

 The contacted nodes will reply with lists of the k nearest
nodes to the key that they know

 The original node will use α of those k nodes for the next
request until it founds the k nearest nodes to the key which
store it

mardi 27 octobre 2009

Kademlia

mardi 27 octobre 2009

Kademlia

 Each time a node receives a message it updates its k-buckets
as follows:
– If the k-bucket that should contain a new found node has

less than k nodes it is added
– If the k-bucket is full then the oldest node in the k-bucket

(they are sorted by last date of contact) is pinged. If it
answers then the node will go in a sub-list that is used
only when nodes in the k-bucket fail.

mardi 27 octobre 2009

Kademlia

 When a new node joins the network it chooses its node id at
random. It then must know one node in the network (given
by the user). This node will go in a k-bucket (all others being
empty)

 The node will then search for its own ID in order to add
itself to its k nearest neighbors (while filling its own k-
buckets)

 Then using random key searches it will continue to fill its k-
buckets starting with the biggest ones

mardi 27 octobre 2009

Kademlia

 Kademlia is the most used DHT protocol for file sharing
 It is used by eMule and Bittorrent clients
 Peer data are typically stored using a 160-bit hash of the file

content
 As each of the k nearest nodes can store different peer data.

One can find up to k peers to start downloading from.
 Keyword searches are made by storing a file link (containing

at least each name and content hash) with keys consisting of
160-bit hashes of any of its title words

mardi 27 octobre 2009

Schedule part 2 MMVEs

 The Scalability Problem
 Hybrid C/S and P2P approaches
 Zone-based coordinators
 Enhanced Point 2 Point
 Neighbor-list exchange
 Mutual Notification
 Mutual Notification with Overlay Multicast

mardi 27 octobre 2009

The Scalability Problem

 Many (> millions) avatars scattered in the virtual world
 Message exchange with those within Area of Interest (AOI)
 How does each node receive the relevant messages?

Area of Interest

mardi 27 octobre 2009

A simple solution (point-to-point)

N * (N-1) connections ≈ O(N2)  Not scalable!

Source: [Funkhouser95]

mardi 27 octobre 2009

A better solution (client-server)

Message filtering at server to reduce traffic
N connections = O(N)  server is bottleneck

Source: [Funkhouser95]

mardi 27 octobre 2009

Current solution (server-cluster)

Still limited by servers. Expansive to deploy & maintain.

Source: [Funkhouser95]

mardi 27 octobre 2009

Scalability Analysis

 Scalability constrains
– Computing resource (CPU)
– Network resource (Bandwidth)

Non-scalable system vs. Scalable system

x: number of entities

y: resource consumption at the limiting system component

Resource limit

mardi 27 octobre 2009

Solution ?

 Strategies
– Increase resource => More servers
– Decrease consumption => Message filtering

 Architectures Scale
– Point-to-point tens 10^1
– Client-server hundreds 10^2
– Server-cluster thousands 10^3
– Peer-to-Peer ? millions 10^6

…

mardi 27 octobre 2009

Hybrid C/S and P2P approaches

 Mix C/S approaches with P2P
– P2P can be on the server-side

 Servers communicate through a P2P overlay network
– or on the client-side

 Clients form a P2P overlay network
– or both-side

mardi 27 octobre 2009

Server-side P2P

 Example: [Rieche et al. 2006] uses the CAN DHT
– Can add servers dynamically when the server cluster is

saturating

mardi 27 octobre 2009

Server-side P2P

 Example: [Rieche et al. 2006]
– Moreover if a server fails, replication on neighboring

servers allows for graceful recovery

mardi 27 octobre 2009

Client-side P2P

 Example: [Ito et al. 2006]
– Some clients act as relay for other clients

mardi 27 octobre 2009

Client-side P2P

 Example: Badumna
– Clients communicate mainly with each other using a P2P

overlay (typically for object attribute updates and chat)
– They use servers only when there is a need for

arbitration, authentication or intrusion detection

mardi 27 octobre 2009

Both-side P2P

 Example: HyperVerse/GP3 [Esch et al. 2008]
– Uses 2 overlay networks with different characteristics

mardi 27 octobre 2009

Zone-based coordinators

 Fixed number of zones
 In each zone, one super-peer coordinates

connectivity
 Example : SimMud

[Knutsson et al. 2004]
– coordinators manage

multicast trees using
Pastry and Scribe
(multicast tree based
on Pastry)

mardi 27 octobre 2009

Enhanced Point 2 Point

 N*(N-1) Point 2 Point connections
 Plus filtering
 Example:

Update Free Regions (UFR) [Makbily et al. 1999]
– defines pairs of mutually invisible regions in the VE
– avatars in different UFRs don’t need to communicate
– Problems :

 all nodes need to communicate regularly to negotiate their UFRs
 what happens when crowding occurs ?

mardi 27 octobre 2009

Enhanced Point 2 Point

 Another example: Frontier Sets [Steed et al. 2004]
– As long as the green avatar stays in the green part of the

map and the red avatar stays in the red part, no mutual
update is required

mardi 27 octobre 2009

Neighbor-list exchange

 Each node connects with a fixed number of nearest
neighbors

 Nodes constantly exchange neighbor-lists so that
they can discover new neighbors

 To avoid partitions there is a minimum number of
connections with some neighbors even if they are
very far

mardi 27 octobre 2009

Neighbor-list exchange

 Example: [Kawahara et al. 2004]

mardi 27 octobre 2009

Mutual notification

 Each node is only linked with AOI neighbors
– ie nodes which avatars are in the AOI of the local avatar

 when nodes move they notify each other of the new
AOI neighbors

 Example : Solipsis 1 [Keller and Simon 2003]
– uses the minimum convex hull

mardi 27 octobre 2009

Mutual notification

 Example : Solipsis 1
– if e is inside the convex hull of its

external neighbors => no problem
– if it isn’t then it needs to connect to

other neighbors
– additional connections are also

maintained so that there is no
partition

mardi 27 octobre 2009

Mutual notification

 Example : VON [Hu et al. 2004]
– Uses Voronoi diagrams to solve the neighbor discovery

problem
– Each node constructs a Voronoi of its neighbors
– Mutual collaboration in neighbor discovery

mardi 27 octobre 2009

Mutual notification

 Example : VON

mardi 27 octobre 2009

Mutual notification

 Example : VON

Circle Area of Interest (AOI)

White self

Yellow enclosing neighbor (E.N.)

L. Blue boundary neighbor (B.N.)

Pink E.N. & B.N.

Green AOI neighbor

D. Blue unknown neighbor

mardi 27 octobre 2009

Mutual notification

 Example : VON
– when a new node appears: a JOIN request is forwarded

from any node to the closest one

mardi 27 octobre 2009

Mutual notification

 Example : VON
– when a new node appears: a JOIN request is forwarded

from any node to the closest one

mardi 27 octobre 2009

Mutual notification

 Example : VON
– when a node moves, it sends its position to all its

neighbors. B.N. check for overlaps of the AOI with new
neighbors. B.N. notify the moving node.

112

Boundary
neighbors

New
neighbors

mardi 27 octobre 2009

Mutual notification

 Example : VON
– when a node moves, it sends its position to all its

neighbors. B.N. check for overlaps of the AOI with new
neighbors. B.N. notify the moving node.

112

Boundary
neighbors

New
neighbors

Non-overlapped
neighbors

mardi 27 octobre 2009

Mutual notification with Overlay Mcast

 Instead of maintaining direct connections with all
neighbors => multicast can be used

 Example: VON forwarding [Chen et al. 2007]
– connect with 1-hop neighbor, forward to others in AOI

mardi 27 octobre 2009

Mutual notification with Overlay Mcast

 Instead of maintaining direct connections with all
neighbors => multicast can be used

 Example: VON forwarding [Chen et al. 2007]
– connect with 1-hop neighbor, forward to others in AOI

mardi 27 octobre 2009

Mutual notification with Overlay Mcast

 Example: VoroCast [Jiang et al. 2008]
– Constructs a spanning tree dynamically

mardi 27 octobre 2009

Mutual notification with Overlay Mcast

 Example: FiboCast [Jiang et al. 2008]
– Adjusts message transmission frequency to distant nodes

hops 1 2 3 4 5 6 7 8

ˇ ˇ X X X X X X -6

ˇ ˇ ˇ X X X X X -5

ˇ ˇ ˇ X X X X X -5

ˇ ˇ ˇ ˇ X X X X -4

ˇ ˇ ˇ ˇ ˇ X X X -3

ˇ ˇ ˇ ˇ ˇ ˇ ˇ X -1

ˇ ˇ ˇ ˇ ˇ ˇ ˇ ˇ 0

ˇ ˇ ˇ ˇ ˇ ˇ ˇ ˇ 0

Max_count Fibonacci

1 2 0

2 3 1

3 3 1

4 4 2

5 5 3

6 7 5

7 10 > 8 8

8 ∞ ∞
mardi 27 octobre 2009

Interesting Middlewares

 Project JXTA (juxtapose): offers several java
libraries that can be used to program P2P overlays
http://jxta.dev.java.net/

 The VAST Project: offers an implementation of
VON and VSM in C++ (older version in Java)
http://vast.sourceforge.net/index.php

 The Badumna Network suite: offers a complete P2P
overlay for MMVEs in C# (but can be used through
a proxy)
http://www.badumna.com/

mardi 27 octobre 2009

http://jxta.dev.java.net
http://jxta.dev.java.net
http://vast.sourceforge.net/index.php
http://vast.sourceforge.net/index.php
http://www.badumna.com
http://www.badumna.com

Thanks

 This keynote is based on:
– Eng Keong Lua; Crowcroft, J.; Pias, M.; Sharma, R.; Lim, S., "A survey and

comparison of peer-to-peer overlay network schemes," Communications
Surveys & Tutorials, IEEE , vol.7, no.2, pp. 72-93, Second Quarter 2005

– A P2P tutorial presented at PDCAT07 by Aaron Harwood
http://p2p.csse.unimelb.edu.au/docs/PDCAT07-Tutorial.pdf

– The VAST project “publications” and “related work” pages (managed by
Shun-Yun Hu)
http://vast.sourceforge.net/index.php

– Wikipedia’s Distributed Data Sharing category articles
http://en.wikipedia.org/wiki/Category:Distributed_data_sharing

mardi 27 octobre 2009

http://p2p.csse.unimelb.edu.au/docs/PDCAT07-Tutorial.pdf
http://p2p.csse.unimelb.edu.au/docs/PDCAT07-Tutorial.pdf
http://vast.sourceforge.net/index.php
http://vast.sourceforge.net/index.php
http://en.wikipedia.org/wiki/Category:Distributed_data_sharing
http://en.wikipedia.org/wiki/Category:Distributed_data_sharing

