
Networked Virtual Environments
Origins & Architectures

Patrice Torguet

Paul Sabatier University / IRIT / VORTEX

Schedule

Introduction
Applications
Architectures for Networked Virtual Environments

Distributed architectures
Dynamic shared state management
Interest management techniques

Networked games specifics
FPS
RTS
MMORPG

Introduction

Definitions
Virtual Reality (VR) : techniques and tools used in order to give someone

the illusion that s/he is really immersed in a synthetic world

Introduction

Definitions
Virtual Reality (VR) : techniques and tools used in order to give someone

the illusion that s/he is really immersed in a synthetic world

Networked Virtual Environments (NVEs) : several people share the same
virtual world thanks to a computer network

Introduction

Synonyms :
Networked Virtual Environments (NVEs)
Networked Virtual Worlds (NVWs)
Distributed Virtual Reality (DVR)
Collaborative Virtual Environments (CVEs)
Collaborative Virtual Worlds (CVWs)
Shared Virtual Worlds (SVWs)
Massively Multiplayer Online Games (MMOGs)

Entertainment Applications

Multiplayer Games
First Person Shooter (FPS)

Doom, Quake, Unreal Tournament...
Real Time Strategy (RTS)

Warcraft, Starcraft, Age of Empires...
Computer Role Playing Games (CRPG)

Neverwinter Nights, Final Fantasy...
Sport simulations

Pro Evolution Soccer, Need for Speed...
MMOGs

Ultima Online, Everquest, World of Warcraft...
...

Serious Applications

Digital Mockups (DMUs)
Allow several engineers to work on the same digital mockup
Examples :

CSA (Common Support Aircraft) for the US DoD
Several DMUs were used during Airbus A380 design

Scientific Visualization
Collaborative work on scientific data
Examples :

Cooperative visualization of proteins and other molecules (Buffalo University)
Oil Tanks Collaborative Visualisation

(Northern Arizona University)
Volumetric data visualization

(University of Illinois at Chicago)

Serious Applications

Military Simulation
Military Training
Examples :

Networked flight simulators (Aéronavale)
Close Combat Tactical Trainer (CCTT)

Civilian Simulation
Civilian Training
Examples :

Firefighter training (ENSTB)
Surgeons training (ICT Australia)

Serious Applications

Teleoperation
Robot remote control in remote and/or dangerous environments
Examples :

Submarine Remotely Operated Vehicle (ROV) (Ifremer)
Remote control of a cleaning robot in a nuclear plant (EDF)
Semi-automatic remote control of a robot on Mars (NASA)

Telepresence
Bring the expertise of a human being in a distant place
Example :

Medical expertise for surgery or emergency situations (British Telecom)

Network Programming (Overview)

 Network problems
 Latency

 Time spent when sending one bit of data from one place to another place (delay, lag,
ping …)

 A big latency induces a low interactivity level for the VE
 Latency is due to:

 light-speed (about 8.25 ms per time zone)
 sending and receiving (depends on computer speed)
 network added delay (commutation)

 Throughput/Bandwidth
 Number of bits that can be transmitted by the network in 1 second
 Depends on cables and network equipments

 Reliability
 A network can drop packets (congestion)
 Data can be modified (transmission errors)
 If we need reliability we need to have acknowledgement messages

Network Programming (Overview)

Application level protocol
Application layer

(other protocols exist for transport, routing…)
Describe a set of rules that 2 applications must follow in order to

communicate correctly
3 Components

 Message Format
 Data contained in a message
 How to extract these data ?

 Semantic of messages
 When do we need to send a message ?
 What must we do when we receive a message ?

 Error management
 What must the sender and/or the receiver do when they detect an error ?

Network Programming (Overview)

API: most used is BSD Sockets on TCP/IP (Internet)
 Inter-process communication similar to file input/output

 Sending data to a process ~ writing data in a file
 Wait/receive data from a process ~ reading data from a file

 Only difference: Connection or destination parameters
 We must choose the destination computer: IP address or name (DNS)
 We must choose the destination application: Port number
 We must choose a transport protocol:

Reliable (no loss of data and ordered send/receive) but « slower » (TCP)
Not reliable but « faster » (UDP)
broadcast or multicast UDP

 Other big difference: asynchronous (function calls may block)
 Receiving is a blocking operation

=> You can use Threads (e.g. with Java)
=> You can use select (you can wait on several channels for a specified amount of

time)
Sending may block with TCP (but not often)

Let’s start with a simple example

 2D example
Each user controls a spaceship (a

triangle !)
Distant ships are shown on each

application

 Written in Java for simplicity

MUVE (multi user virtual
environment)

Downloadable from my website:

ship controlled by
another user

locally controlled ship

locally controlled
ship

http://torguet.net/cours

http://torguet.net/cours
http://torguet.net/cours

Let’s start with a simple example

Coded with BSD Sockets using UDP multicast
Message Format

ship unique identifier
position and orientation of the ship

Semantic of messages
Each time the local ship moves its application sends a message to every other

application
When the first message describing a ship is received a local triangle is created and

displayed
For the following messages we just update the position and orientation of the

triangle

No error management

Let’s start with a simple example

The classes

Spaceship

Polygon

Space

Panel

MUVE

Frame

Attributes :
id
x, y, velocity, currentAngle
oldX, oldY, oldAngle

Methods :
Spaceship(id)
translate(x,y)
rotate(angle)
update(time)
sendNetworkUpdate()

Attributes :
local_ship, spaceships
lastTime
socket, internetAddress (ia)

Methods :
Space(id)
connectToNetwork()
updateLocalShip()
paintComponent()
run()

Attributes :
space

Methods :
MUVE(id)
run()
initComponents()
myKeyPressed()
exitForm()
main()

Let’s start with a simple example

 Spaceship class
void sendNetworkUpdate()

// if nothing changed we don’t send (Semantic of packets)
 if ((oldAngle == currentAngle) && (oldX == x) && (oldY == y))
 return;
// we update old values
 oldAngle = currentAngle; oldX = x; oldY = y;

// we place data to send in a buffer (Packet Format)
 ByteArrayOutputStream stream = new ByteArrayOutputStream(40);
 DataOutputStream dos = new DataOutputStream(stream);
 dos.writeInt(id); dos.writeInt(x); dos.writeInt(y); dos.writeDouble(currentAngle);
// we create a datagram
 DatagramPacket dp = new DatagramPacket(stream.toByteArray(),

 stream.toByteArray().length, Space.ia, 2000);
// we send the datagram
 Space.socket.send(dp);

Let’s start with a simple example

 Space class
void connectToNetwork()

// we use multicast
// we create a socket using a chosen port
 socket = new MulticastSocket(2000);

// we join a multicast group
 ia = InetAddress.getByName("224.11.4.2");
 socket.joinGroup(ia);

// we create a thread for network receives
 Thread networkListener = new Thread(this);
 networkListener.start();

Let’s start with a simple example

 Space class
void run()

// this buffer will receive network messages data

 byte buffer[] = new byte[256];
 DatagramPacket dp = new DatagramPacket(buffer, buffer.length);

while (true) {
 // we wait for a datagram
 socket.receive(dp);
 // we extract data from the datagram (Packet Format)
 ByteArrayInputStream stream = new ByteArrayInputStream(buffer);
 DataInputStream dis = new DataInputStream(stream);
 // we first extract the id
 int id = dis.readInt(); Integer theId = new Integer(id);

Let’s start with a simple example

 Space class
 void run() (continued)

 // (Semantic of packets)
 // we search for the spaceship in the list (a hashtable) of ships
 Spaceship sp = (Spaceship) spaceships.get(theId);

 // if the ship isn’t found and is not the local ship we create it
 if ((sp == null) && (id != local_ship.id)) {
 sp = new Spaceship(id);
 spaceships.put(theId, sp);
 }

 // if we have a ship
 if (sp != null) {
 // we update its position and orientation (Packet Format)
 sp.x = dis.readInt();
 sp.y = dis.readInt();
 sp.currentAngle = dis.readDouble();
 // rotate will draw the ship
 sp.rotate(0);
 }
 } // end while

Networked VEs (short) history

Military applications

SIMNET
DIS

Networked games

MUD1 and MUDs/MOOs/MUSHs
SGI Flight & Dogfight

Lucasfilm Habitat
Doom

Warcraft

Ultima Online
WOW

EVE Online

SIMNET (simulator networking)

 SIMNET is a networked VE developed for DARPA by BBN (Bolt,
Beranek and Newman), Perceptronics and Delta Graphics.

 Specifications started in 1983 first operational version delivered at end of
march 1990.

 Specifications
Simulate from 100 to 100 000 entities (hardware simulators).
Multi-sites (geographically distributed).
Heterogenous Simulations (several different simulators).
Low cost compared to the the cost of real exercises.
Totally distributed (no central point of failure).
Realtime.

SIMNET (simulator networking)

SIMNET Architecture

3D graphics
generator Other vehicles

states table
Network Interface

Sound FX generator
local vehicle

dynamic model
Input devices

LAN

SIMNET (simulator networking)

The software architecture is based on 3 components:
An objects/events architecture,
Simulation nodes are autonomous,
“dead reckoning” predictive algorithms

Object/events architecture models the world with a collection of objects
whose interactions are modeled by a collection of events
Objects are vehicles and weapon systems
Events are messages sent through the network indicating changes to

the world or to objects

SIMNET (simulator networking)

« Dead-Reckoning »

V0

Local Site Distant Site

Real model
+ extrapolated model

Extrapolated model

V1

Back to the example

Let’s add dead-reckoning

Manually
controlled ship

dead-reckoning
controlled ship

an important
difference fires

update

Ghostship

Polygon
Attributes :
id, velocity,
x, y, currentAngle

Methods :
Spaceship(id)
update(time)
sendNetworkUpdate()

Spaceship

Methods :
Ghostship(id)
translate(x,y)
rotate(angle)
update(time)

Attributes :
ghost, maxDistance2

Back to the example
 Spaceship class (revisited)

void update(double time)
// move the ship
…
// move its ghost
ghost.update(time);

void sendNetworkUpdate()
// we compare the distance between the ship and its ghost to the threshold
 if ((x - ghost.x)*(x - ghost.x) + (y - ghost.y)*(y - ghost.y) < maxDistance2)
 return;
// update the ghost
 ghost.x = x; ghost.y = y; ghost.currentAngle = currentAngle; ghost.velocity = velocity;
// data to send is placed in a buffer
 ByteArrayOutputStream stream = new ByteArrayOutputStream(40);
 DataOutputStream dos = new DataOutputStream(stream);
 dos.writeInt(id); dos.writeInt(x); dos.writeInt(y);
 dos.writeDouble(currentAngle); dos.writeInt(velocity);
// a datagram is created
 DatagramPacket dp = new DatagramPacket(stream.toByteArray(),

 stream.toByteArray().length, Space.ia, 2000);
// and sent through the network
 Space.socket.send(dp);

Back to the example
 Space class (revisited)

 synchronized void paintComponent(Graphics g)
// display local ship
 …
// update (with DR algorithms) and then display distant ships
 Enumeration ships = ghostships.elements();
 while(ships.hasMoreElements()) {
 Ghostship sp = (Ghostship)(ships.nextElement());
 sp.update(time - lastTime);
 g.drawPolygon(sp);
 }

 void run()

 ...
 // we search the ship in the list of ghost ships
 Ghostship sp = (Ghostship) ghostships.get(theId);
 // if the ship isn’t found and is not local then we create a ghost ship
 …
 // if we have a ship
 if (sp != null) {
 // we update it
 sp.x = dis.readInt(); sp.y = dis.readInt();
 sp.currentAngle = dis.readDouble(); sp.velocity = dis. readDouble();
 ...

SIMNET (simulator networking)

SIMNET and scalability
The SIMNET network software architecture proved scalable with

an exercise in March of 1990 having some 850 objects at five
sites, with most of those objects being semi-automated forces.

Objects in that test averaged one packet per second, with each
packet being some 156 bytes in size for a peak requirement of
1.06 Mbits/second, just under the T-1 speed of the connecting
links.

DIS (Distributed Interactive Simulation)

DIS is SIMNET successor but it is more generic
It has the same 3 components :

object/event architecture
autonomous simulation nodes
« dead reckoning » algorithms

The core of the DIS network software architecture is the
protocol data unit (PDU).

Determining when each vehicle (node) of the simulation should
issue a PDU is the key to this architecture.

DIS (Distributed Interactive Simulation)

The DIS (IEEE 1278) standard defines 27 different PDUs, only
four of which (Entity State, Fire, Detonation, and Collision) are
used by nodes to interact with the virtual environment.

In fact, most DIS-compliant simulations only implement those
four PDUs, either throwing away the other 23 PDUs without
comment or issuing a brief error message indicating a non-
supported PDU was received.

DIS (Distributed Interactive Simulation)

A demonstration at the 1993 Interservice/Industry Training and
Education Conference (I/ITSEC) showed that Entity State
PDUs comprised 96% of the total DIS traffic

Remaining 4% distributed mainly amongst Transmitter (50%),
Emission (39%), Fire (4%), and Detonation (4%).

The simulation contained 79 players sending PDUs, though the
actual mix of vehicles involved in this exercise is not available.

Air vehicles issued one ESPDU/second average in that
demonstration, while land vehicles averaged 0.17 ESPDUs/
second. Some participants in that demonstration issued packets
at frame rate: 20 ESPDUs/second

DIS (Distributed Interactive Simulation)

In DIS, we get more of a notion that any type of computer
plugged into the network that reads/writes DIS PDUs and
manages the state of those PDUs properly can fully participate
in a DIS environment.

This fully distributed, heterogeneous network software
architecture means that workstation class machines can play
against PC class machines.

There are several instances of fairly large DIS engagements,
much larger than the 300 to 500 players for which DIS is
designed.

However, these “DIS” engagements actually modify the DIS
network software architecture for their particular circumstances
to achieve useful demonstrations.

DIS example: CCTT

The US Army's Close Combat Tactical Trainer (CCTT) is
(was?) one of the larger scale networked virtual environments.

MUD1 and MUDs

In 1978, Roy Trubshaw and Richard Bartle coded, with the
MACRO-10 assembler on a DecSystem-10 at university of
Essex, a multi-user text game called MUD (Multi User
Dungeon)

It’s a text mode game which allows players to move in a
virtual world, take virtual objects and use them to kill
monsters and other users (they may also talk to each other...)

Several such multi-user games have been developed since
1978

MUD1 et les MUDs

SGI Flight & Dogfight

Gary Tarolli of Silicon Graphics, Inc. is probably the person that most in the
networked virtual environment community would credit as the originator of
their thoughts on networking virtual environments.

Gary was the original programmer of the Silicon Graphics demo program,
Flight, in the summer of 1983. Flight is the program everyone showed you if
they had purchased an SGI workstation in the 1984-1992 time period.

Networking was added into Flight in stages, beginning in 1984.
The initial networked version of Flight actually used a serial cable between

two SGI workstations and ran at something like 7 frames per second on a
Motorola 68000 based workstation (about 1 MIPS with maybe 500 polygons
per second graphics capability).

SGI Flight & Dogfight

That demonstration was then upgraded to use XNS multicasting on an
Ethernet network in time for SIGGRAPH 1984.

 Flight was distributed in networked form on all SGI workstations sometime
after SIGGRAPH 1984 and could be seen in practically every SGI-outfitted
lab at that time, either during the day on breaks or after hours.

 Sometime after the release of the networked version of Flight, in early 1985
it is believed, SGI engineers modified the code of Flight to produce the
demonstration program Dogfight.

This modification dramatically upgraded the visibility of net-VEs as players
could now interact by shooting at each other.

They probably created the first networked virtual environment.
 Problem: packets were (are ?) sent at frame rate => saturating the network.

Lucasfilm Habitat

 First commercial graphical virtual world (1986)
 2D Chatworld (MUDs, MOOs, MUSHs)
Developed for Lucasfilm Games and Quantum Computer Services (AOL)
 First version was for Commodore 64
Users payed 8 cent/minute (1 people spent about $1000 in one month ~ 3.5

online days)
 15 000 users from a potential customer population of 100 000 (BBS users)

DOOM

On 10 December 1993, Id Software delivered the shareware version of
DOOM

This game is probably the ancestor of most of current networked games
Like flight and dogfight it used a huge network bandwidth
An estimated 15 million shareware copies of Doom have been downloaded

around the world, passed from player to player by floppy disk or online
networks.

Warcraft

Dune II (1992) is the first
Realtime Strategy (RTS)
mouse controlled game.

Warcraft (1994) is the first
RTS to include a multi-user
mode (through modems,
direct serial link or IPX
LANs).

Ultima Online and
MMORPGs

Ultima Online is a direct descendant of MUDs or Habitat
like games.

In 1997, it was the first to bring a real massive scale to net-
VEs with 100 000 paying players ($9.95/month) in one year
(totaling a 12 million dollars revenue per year when adding
the cost of retail game boxes).

World of Warcraft

World of Warcraft, delivered in 2004 (10 years after Warcraft
1), is currently the most played MMO in the world (at least in
the western countries) with more than 11.5 millions regular
players (12/08).

However each server (in fact cluster of servers) “only” manages
5000 simultaneous players.

EVE Online

EVE Online is currently the most “massive” MMO
managing more than 50 000 simultaneous players on the
same server (cluster) (53 850 in 03/09).

Interactivity is somewhat limited however.

Net VEs architecture

Communication model

Net VEs architecture

Communication model

Broadcast

Net VEs architecture

Communication model

Broadcast

Net VEs architecture

Communication model

Broadcast

Net VEs architecture

Communication model

Broadcast
Point to point

Net VEs architecture

Communication model

Broadcast
Point to point

Net VEs architecture

Communication model

Broadcast
Point to point

Net VEs architecture

Communication model

Broadcast
Point to point
Communication groups (multicasting)

Net VEs architecture

Distributed architecture

Fully distributed (no server)
Peer to Peer P2P

P2P with multicasting

Centralized (Client/Server C/S)
Multiple servers architecture

Coordinated multi servers architecture

Architecture choice

Peer to peer

Simple case: 2 participants on a LAN
Each participant’s machine directly sends state changes to the

other participant’s one

LAN

Participant 1 Participant 2

Peer to peer

General case: each participant can talk to every other
participants using broadcast

LAN

Participant 2 Participant NParticipant 1 Participant 3

Peer to peer

Example: 10 Mbps Ethernet LAN (100 Mbps)
Available bandwidth : ~ 7 Mbps (80 Mbps)
Ethernet saturates when bandwidth usage reaches about 70%

(switching saves a bit more bandwidth)
Example of standard packet: DIS’s ESPDU

144 bytes long (1152 bits)
Worst case scenario

limit is 6000 PDU / second with 7 Mbps (70000)
if each participant generates 30 PDU / second
limit is 200 participants on a 10 Mbps Ethernet LAN (2300)

Peer to peer

But, we don’t only want to play on LANs
WANs cannot use broadcasting. Each packet must be sent to

each participant individually.
Therefore 200 participants on a 10 Mbps WAN becomes:

1 participant sending to 200 participants
200 participants sending to 1 participant
14 participants simultaneously communicating
1 participant managing 14 vehicles sending to 14 participants
...

P2P with Multicasting

Problem : sending messages on a WAN is costly
Messages between LANs are sent separately
The same message may be sent several times between two LANs

Sender on LAN 1

Receivers on LAN 2

P2P with Multicasting

 Solution: multicasting uses « trunk sharing » to save network bandwidth
After joining a multicast IP address every participant receive all messages

sent on this address
Allows groups of any size to communicate with a single transmission
Often presented as « The Solution » to scalability problems

LAN 1

LAN 2

LAN 3

LAN 4

shared trunk

Multicasting nowadays

Multicasting is quite an old technology but the MBone isn’t
the Internet
Multicast routers are not configured for anyone to use multicasting
However it’s the best solution ...
… therefore if a small percentage of the participants can’t multicast

we can use proxies
Each proxy joins the Multicast address
Some clients directly connect through a proxy (usually using UDP)

Other solutions: overlay multicast or application level multicast

Overlay Multicast

C

E

D

INTERNET
A

B

G

F

A

C

B

G

E

F
D

H
J

Private
Network

Standard IP Multicast:
 Generally: 1 to many

 only one sender
 root based tree

 Private network
 (usually only works on one
management domain)
 Independent of the application

Overlay Multicast :
 many to many

 multiple senders for the same group
 source based trees

 Open network
 (independent of any management domains)
 Can be adapted to an application

 End to end QOS
 Efficient management of groups

Overlay Multicast example: XOM

Internet

XOMR1

A

B

C

D

XOMR2

A

XOMR3

B

C

D

G1 = {A, B}

G2 = { B, C, D} B

G1 = {A, B}

G2 = { B, C, D}

Point to point
communications

standard
multicast

Application Level Multicast

Same principle as Overlay Multicast
But everything is managed in the applications

Advantage: we can have a better adaptation to the application
Disadvantage: the application becomes more complex

C

E

D

INTERNET
A

B

G

F

Here A,B…G are
applications not Overlay
Mcast routers

Fully distributed architectures

Advantages
No central point of failure, no bottleneck
Multicasting saves network bandwidth
Can use several Multicast addresses for message filtering

Disadvantages
Can be difficult to setup and manage
Bandwidth usage (without Mcast) is in O(participants²)
Every packet exchanged on a LAN may need to be examined by

every computer (Mcast and Bcast without switching)

Centralized architectures

Used by most FPS games on the Internet
Usually manage a few 100s players simultaneously
Limit depends on the complexity and interactivity of the

application

Centralized architectures

Disadvantages
The server can become a bottleneck
Reliability problems (single point of failure)
Increases latency

Advantages
Bottlenecks can be useful
You can authenticate/bill participants easily
Server can filter messages
Server can compress several messages in one message

Multi-server architectures

Servers can manage different parts of the VE

P D

Multi-server architectures

Advantages
Reliability: redundancy through the use of several servers
Scalability: divide tasks either by

grouping clients (MMO shards)
dividing the world

Disadvantages
Multi-server shared objects do not propagate their changes (client

grouping)
We still can have one single point of failure (world division)

in fact several single points of failure
That’s how the World Wide Web works

it works isn’t it ?

Coordinated multi server architectures

Servers communicate with each other
in order to manage shared objects
for load balancing

Coordinated multi server architectures

Advantages
A hierarchy of servers can be used to filter efficiently
Can manage dynamic load balancing
Sharing the same virtual world
Servers can communicate using Mcast (hybrid P2P and C/S)

Disadvantages
Coordination is a difficult task
If you use a hierarchy you can increase latency

Summary

Choice isn’t easy

If the most important thing for you is

scalability: P2P / Multi-servers
reliability: coordinated multi-servers
simplicity: centralized
interactivity: P2P

Dynamic Shared State Management

Definition
Where is the problem ?
Coherency/throughput tradeoff
Different solutions

Centralized repositories

Frequent state regeneration
Dead-reckoning

Dynamic Shared State Management

A successful networked VE is used by several users
… distributed everywhere in the real world
… constantly modifying their avatars (position, etc.)
… and trying to see each other in realtime

 Problem: how can we be certain that they all see the same world ?

What is the problem ?

Goal: transmit information to every computer in realtime
But, network crossing takes time (latency)
Each participant may see a different latency
Throughput is limited by the network bandwidth
Packets may be lost

The problem: trying to make sure that everyone has received some data
takes time

Coherency/throughput tradeoff

 It is impossible to allow very frequent changes to be made to the shared state
and, at the same time, guarantee that every participant sees the same shared
state

We have to choose between
a very dynamic world (with lots of frequent changes)

… and do not wait transmission based incoherency problem resolutions

and a less dynamic world
… and take the time needed to solve all incoherency problems

Design implications

You need to choose a technique while taking into account the
specificities of the simulated world

Every computer sees the same state
Less frequent updates

Each computer sees a different state
More frequent updates

Coherency Throughput

Central
Repositories

Frequent
Regeneration

of the shared state

Dead
Reckoning

Central Repositories

Store the shared state in a central place
Updates are made to this central repository
Every shared state reads are done from this central place (no cache)
Example: place everything on a networked file system (NFS or AFS)
Better solutions: virtual repositories

A server sends updates synchronously to each client cache
Shared coherency protocols (ex. ISIS)

Used by the first versions of DIVE, BrickNet, Shastra, and some
video-conferencing tools...

Shared
state

Central Repositories

Advantages
Absolute coherency of the shared state
Data is owned by everyone -- You just need to add locks or

semaphores if it is needed by the application
Disadvantages

Often creates a central point of failure
Often creates a bottleneck
Not very efficient
Big communication overhead

Only use this for small systems on LANs or for applications
that require a guaranteed shared state

Shared
state

Frequently send your current state to everyone else
Often use multicast with filtering to reduce bandwidth consumption
You can easily add that in your even loop or on a timer
Ignores network losses: updates are frequent enough so that

incoherencies don’t last for long
Can be integrated with a server which manages object ownership or

with a distributed locks system

Used by SGI Dogfight, RING, Doom (and the first FPSes - up to
Quake 1)

Frequent regeneration

Advantages
Easy to implement
No need for servers or other infrastructure
Better throughput than central repositories

Disadvantages
May use a huge bandwidth (only use this on LANs please)
Users perceive the network lag and its variation directly
Not transparent to the user because of this

Most used technique, good for average systems on LANs, useful if you need
to adapt a monolithic system

Frequent regeneration

Predict the state of distant objects
Computers try to predict the behaviors of distant objects using their

past update messages
When an update is received, we use convergence algorithms to

modify the (badly) predicted state and update prediction algorithms
Updates are more infrequent (only when prediction is too bad)
Object ownership must be explicit

Used by all military environments (SIMNET, DIS, NPSNET...) and
most modern FPS games and MMORPGs

Dead-reckoning

Advantages
Each object may generate its update messages autonomously
Hides the network latency
Reduces update message numbers and therefore the bandwidth usage

Disadvantages
More complex to implement
Prediction model accuracy depends on the object type
Prediction errors can be big if you have a bad network (lots of losses or

high bandwidth)

 Interesting for big environments on WANs that can cope with small
incoherencies

Dead-reckoning

Problem overview
Defining Interest
Examples

Spatial Model of Interaction
Predictive Interest Management
Expanding Spheres
HLA routing spaces
NPSNET spatial filtering
RING/Spline spatial filtering
Space Scale Structure
Three-tiered interest management

Area of Interest Filtering

Potential bottlenecks

Problem Overview

 Goal : see and hear « enough », but not more...
Scalability
Efficiency

 « enough » is defined by:
Interest, perception, visibility...
System constraints (bottlenecks)

Problem Overview

 Goal : see and hear « enough », but not more...
Scalability
Efficiency

 « enough » is defined by:
Interest, perception, visibility...
System constraints (bottlenecks)

Problem Overview

 Goal : see and hear « enough », but not more...
Scalability
Efficiency

 « enough » is defined by:
Interest, perception, visibility...
System constraints (bottlenecks)

Problem Overview

Area of
Interest

MASSIVE’s Spatial Model of Interaction

 Interaction
Media

Observer

Observed

Observer’s
Aura

Focus

Nimbus

Awareness

Observed’s
Aura

Predictive Interest Management

Interaction
 râtée

Based on the spatial model of interaction
Solves the following problem:

Solution:

Missed
Interaction

Predictive Interest Management

Interaction
 râtée

Based on the spatial model of interaction
Solves the following problem:

Solution:

Aura at t Aura at t+dt

Missed
Interaction

Predictive Interest Management

Interaction
 râtée

Based on the spatial model of interaction
Solves the following problem:

Solution:

Aura at t Aura at t+dt

Maximal distance

reached in dt

Missed
Interaction

Predictive Interest Management

Interaction
 râtée

Based on the spatial model of interaction
Solves the following problem:

Solution:

Aura at t Aura at t+dt

Maximal distance

reached in dt

Predictive influence

zone

Missed
Interaction

Interaction
 râtée

Predictive Interest Management

Based on the spatial model of interaction
Solves the following problem:

Solution:

Missed
Interaction

Interaction
 râtée

Predictive Interest Management

Based on the spatial model of interaction
Solves the following problem:

Solution:

Missed
Interaction

Interaction
 râtée

Predictive Interest Management

Based on the spatial model of interaction
Solves the following problem:

Solution:

Missed
Interaction

Extending spheres

Based on the spatial model of interaction
Adds a hierarchy to limit the number of collision detections

Extending spheres

Based on the spatial model of interaction
Adds a hierarchy to limit the number of collision detections

Extending spheres

Based on the spatial model of interaction
Adds a hierarchy to limit the number of collision detections

Extending spheres

Based on the spatial model of interaction
Adds a hierarchy to limit the number of collision detections

Collision Relation

Extending spheres

Based on the spatial model of interaction
Adds a hierarchy to limit the number of collision detections

Collision Relation

Extending spheres

Based on the spatial model of interaction
Adds a hierarchy to limit the number of collision detections

Collision Relation

Extending spheres

Based on the spatial model of interaction
Adds a hierarchy to limit the number of collision detections

Collision Relation

HLA routing spaces

Objects
Update
Region

Generic routing space

Subscription
Region

Filtered
Output

NPSNET’s spatial filtering

RING’s spatial filtering

Spline’s spatial filtering

Space Scale Structure

perceived cells
rejected cells

Three-tiered interest management

First tier
Quadtree filtering

Three-tiered interest management

First tier
Quadtree filtering

Three-tiered interest management

First tier
Quadtree filtering

Second tier
Auras filtering

Three-tiered interest management

First tier
Quadtree filtering

Second tier
Auras filtering

Three-tiered interest management

First tier
Quadtree filtering

Second tier
Auras filtering

Third tier
Functional filtering

Three-tiered interest management

First tier
Quadtree filtering

Second tier
Auras filtering

Third tier
Functional filtering

Networked games specifics

RTS: Real Time Strategy
Synchronous model
Asynchronous model

FPS: First Person Shooters
Standard Architecture

MMORPG
“Shards”
Zones
Instances
Proxies
Seamless Architecture

RTS

Player manages an army and civilians
Creates buildings and units
Gives orders to units
Visibility is very important (“Fog of war”)
Often limited interactivity
Typical phases of play:

Building
Exploration
Combat

Synchronous RTS

Problem: how can you send updates for thousands of units
with a 56K modem connection
E.g. a 2D position (x,y -16 bits), an orientation (8 bits) and a unit

id (16 bits) => 5*8 = 40 bits
Limit: 56000 / 40 = 1400 units moving simultaneously once per

second
Solution: identical world simulation running on each

computer. Network is only used to send player orders (e.g.
mouse events, keyboard events, graphical menu selections
or orders given to a group of units...)

Synchronous RTS

Example: Age of Empire 1 and 2
Computes the length of a game turn taking into account of the

perceived latency (round trip time / 2)
A game turn is composed of several smaller simulation frames
In each game turn

For each player action => send a network message
Receive other players actions

 Stored in a queue
At the end of turn, send an “end of turn” message including time

data in order to regulate the turn length if necessary
Then execute actions in the same order on each computer (action1

of player 1, action 1 of player 2, action 2 of player 1...)
Then execute N simulation frames (N depends on the turn duration)

Example: Age of Empire 1 and 2
When latency is too big, send actions that will be executed in 1 or

2 game turns
Game turn duration depends on latency

Mark used a system of tagging
commands to be executed two
‘communications turns’ in the
future (Comm. turns were
separated in AoE from actual
rendering frames).

So commands issued during turn 1000 would be scheduled for execution during
turn 1002. On turn 1001 commands that were issued on turn 0999 would be
executed. This allowed messages to be received, acknowledged, and ready to
process while the game was still animating and running the simulation.

Turns were typically 200 msec in
length, with commands being sent
out during the turn. After 200
msec, the turn was cut off and the
next turn was started. At any
point during the game, commands
were being processed for one
turn, received and stored for the
next turn, and sent out for
execution two turns in the future.

‘Speed Control’

Since the simulations must always
have the exact same input, the
game can really only run as fast
as the slowest machine can
process the communications,
render the turn, and send out new
commands. Speed Control is
what we called the system to
change the length of the turn to
keep the animation and gameplay
smooth over changing conditions
in communications lag and
processing speed.

There are two factors that make
the gameplay feel ‘laggy’: If one machine’s frame rate drops (or is lower than the
rest) the other machines will process their commands, render all of the allocated
time, and end up waiting for the next turn - even tiny stops are immediately
noticeable. Communications lag - due to Internet latency and lost data packets
would also stop the game as the players waited around for enough data to
complete the turn.

AoE Turn Processing

Yes

No

Yes

No

Accept player

commands

Has turn-time

elapsed?

TX 'Done'

message w /

 timing & count

Analyze game &

ping speed

RX

'Done' msgs for all

players?

Advance turn

counter

Process drop &

timeout checks

Do game turn

(render, etc.)

Adjust timing for

new turn

Increment

'command turn'

Each client calculated a frame rate that it thought could be consistently
maintained by averaging the processing time over a number of frames. Since
this varied over the course of the game with the visible line-of-sight, number of
units, map size and other factors - it was sent with each ‘Turn Done’ message.

Each client would also measure a round trip ‘ping time’ periodically from it to the
other clients. It would also send the longest average ping time it was seeing to
any of the clients with the ‘Turn Done’ message. (Total of 2 bytes was used for
speed control)

Each turn the designated host would analyze the ‘done’ messages, figure out a
target frame rate and adjustment for Internet latency. The host would then send
out a new frame rate and communications turn length to be used. The following
diagrams show how the communications turn was broken up for the different
conditions.

A Single Communication Turn

Frame Frame FrameProcess all messages

Communications turn (200 msec) - scaled to 'round-trip ping' time estimates

50 msec
Frame - scaled to rendering speed

50 msec 50 msec 50 msec 20 fps

High Internet Latency with normal machine performance

Frame Frame
Process all

messages

Communications turn (1000 msec) - scaled to 'round-trip ping' time estimates

50 msec 20 frames, 50 msec each

Frame Frame Frame Frame Frame FrameFrame

20 fps

Poor machine performance with normal latency

FrameProcess all messages

100 msec 100 msec

Frame - scaled to rendering speed

Communications turn (200 msec) - scaled to 'round-trip ping' time estimates

10 fps

The ‘communications turn’ which was roughly the round-trip ping time for a
message, was divided up into the number of simulation frames that on average
could be done by the slowest machine in that period.

Synchronous RTS

Synchronous RTS

Advantages
Even with a very small bandwidth you can manage a huge

number of units
Example of bandwidth usage: Warcraft III uses 7 kbps max

Disadvantages
Need to wait for all players messages before executing their

actions. With huge latencies, the game can stall. It’s not good for
scalability (in term of number of players)

Need to have a totally deterministic simulation. Random
generators need to be synchronized and you need to make exactly
the same number of calls on each computer. Very hard to code.

It is impossible to join the game after it is started
There are lots of cheats: map revelation...

Asynchronous RTS

 Idea: a server manages the complete simulation and only sends
updates for the part of the map that is visible to each player

Advantages:
A lot easier to code (uses filtering techniques)
No more “map revelation” cheats
Players can be added after game start

Disadvantages:
Used bandwidth increases a lot during the game. The more you

explore with a lot of units the more space you see (and in some games
you can even use radars...)

Game turns can be very long in order to wait for all updates.

FPS

Player controls one character
Collects weapons, armors and bonus objects
Kills other player characters (or “bots”)
Very interactive game: fast paced action

FPS: standard architecture

A server simulates the world
It receives moves/shoots orders from each client (player or

bot)
It computes actions on the world
It sends back results to all clients
In order to manage big latencies it often uses “dead

reckoning” techniques
Advantage:

Very interactive (using dead-reckoning)
Disadvantage:

Scalability is limited (a MMOFPS requires a lot of servers with a
small latency with each client)

MMORPG

Each player controls one character
Explores the world
Chats with other players (near ones or distant ones - guilds)
During combats, the player activate skills/spells/special

attacks which all have a limit on the number of time you can
use them in a given period. The rest of the time, the
character auto-attacks.

Characters gain new skills over time.
Interactivity is smaller than for a FPS but bigger than for a

RTS
Biggest interest: several thousands of players share the same

world

MMORPG: “shards”

It is often impossible to allow every subscribers to connect
to the same server.

To solve this problem, Ultima Online introduced the “shard”
concept.

Each “shard” is an identical copy of the game world (at
game start). Each “shard” then evolves independently.

A player must choose in which “shard” he will play when he
creates his character (some MMOGs have character transfer
paying services)

The term comes from the fact that in one of the Ultima
games, the player discovered that the universe was in fact
trapped in several “shards” of a magical crystal.

MMORPG: “shards”

Advantages
You can add “shards” when the number of subscribers increases

and remove them (transferring remaining characters) when it
decreases.

You can setup “shards” in several real world locations in order to
have a smaller latency with clients.

Disadvantage
Players are not in the same shared world, which limits

interactions with other players

Note: some MMOs like EVE Online do not use “shards” but
limit interactivity to allow this.

MMORPG: zones

 In order to manage more users in the same “shard” Everquest
introduced the zone concept in 1999.

Each zone is connected to one or several other zones through
“teleporters” which allow a character to change zones.

A player only sees and interacts with players in the same zone.
Generally, each zone is managed by a different process.
The whole process set is then distributed statically or dynamically

on a set of server computers (gathered in a cluster).
Optimizations allow all zones on the same computer to be managed

by the same process (in order to avoid context switchings).

MMORPG: zones

Advantages
The virtual world CPU usage is distributed on several machines.
You can manage more players in the same “shard”.

Disadvantages
Zones create artificial divisions of the virtual world.
One zone can become very popular and saturate the computer

that manages it.
It is often difficult to divide the world in zones “a priori” in order

to insure a good load balancing.

MMORPG: instances

The instance (or instanced zone) concept has been
introduced by Everquest in 2003.

It consists in reserving a zone to a small group of players
and duplicate it for each group (there are therefore several
instances of the same zone).

Instances are managed in the same way as zones but require
far less computer resources.

A single computer can manage a lot of instances.
Moreover, as instances have a limited duration (at most a

few hours), the cluster can load balance using instances.
New instances will be created on the computer that has the
lowest CPU load.

MMORPG: instances

Advantages
Instances allow a fine balancing of the virtual world CPU load.
It is easy to predict the CPU load needed for an instance because

it only manages a small number of players.
Disadvantage

There are no real disadvantages except that duplication isn’t very
realistic.

Note: instances can have long durations (they are then called
raids) but this is more of a database issue.

MMORPG: proxies

In order to avoid a client to interact with all the servers in a
MMO cluster, games use proxy servers.

When a client first connects to the game (and after an
authentication step managed by specific servers) a proxy is
chosen for this client. This proxy will stay the same during
all the playing session (until client disconnects).

Advantage
Client doesn’t need to disconnect/connect to several computers

when the character change zones, instances...
Proxies hide other servers that are thus less exposed to hacking

attempts (proxies are in the DMZ)
Disadvantage

Proxy crossing adds a little latency

MMORPG: seamless architecture

The seamless architecture (i.e. with no apparent border
between zones) has been introduced by World of Warcraft in
2004.

It consists in managing all the virtual world (or a big part of
it) in only one big zone that is managed by several
computers.

The zone is divided in regions, dynamically allocated to
several computers.

If a region becomes too popular it is divided again and some
sub-regions are allocated to other computers.

MMORPG: seamless architecture

Advantage
The world is more realistic as there are no artificial divisions.

Disadvantages
This kind of architecture is way more difficult to manage and

code.
Object exchange between characters in different regions is very

complex to code in order to avoid duplications if one of the
computers (managing one region) crashes.

MMO architecture example

MMO architecture example: EVE Online

• 400 GHz CPU / 200 Gb RAM

• 2 Routers (CISCO Alteon)

• 14 Proxy servers (IBM Blade)

• 55 Sol (zones) servers (IBM x335)

• 2 database servers (in a cluster, IBM
Brick x445)

• Windows 2000, MS SQL Server

• Upgrade:
• AMD x64 IBM Blade

Thanks

This keynote is based in part on:
Michael Zyda courses (Gamepipe laboratory)

"Networked Virtual Environments - Design and Implementation" book, Sandeep
Singhal & Michael Zyda, ACM Press 1999.

Networked virtual environments course at SIGGRAPH’99

Nicolas Farcet’s PhD defense keynote

Several research papers...

