
Middlewares for Networked VEs

Patrice Torguet
torguet@irit.fr
Paul Sabatier University/IRIT/
VORTEX

mailto:torguet@irit.fr
mailto:torguet@irit.fr

Schedule

 Introduction
 Generic Middlewares

– RPC, RMI, CORBA
 Specific Middlewares

– Direct Play, TorqueNL, Raknet, Unreal net code
– HLA, Openskies, Vega Prime, Delta 3D
– Multiverse, Virtools Multiuser Server, NeL
– BigWorld, Hero Engine

 Conclusions

Introduction

 Middleware: software layer that is located between
applications and the operating system

 Like an OS it offers services that many applications
use

 Like an application, it is not required by every
application and it uses OS services

3

Introduction

 Several Middlewares exist (DBMS, distibution,
GUI, 3D...)

 Here: network related middlewares
 Generally speaking: they use sockets (and

sometimes threads and synchronization tools) to
offer higher level services

4

Introduction

 Service examples
– Remote procedure/method calls
– Naming/Location/Discovering
– Migration/Load balancing
– Message/events/notifications transfer

5

RPC : Remote Procedure Call

 Client/server based
 Remote procedure call between a client and a server

– Client calls a local procedure (called stub or proxy)
– The local procedure uses a socket connexion to send a procedure identifier

and parameters to the server (request)
– The server receives the request using a socket, extracts the procedure id and

parameters (this is done by what is called a skeletton)
– The skeletton runs the remote procedure and sends back results through the

socket connection
 rpcgen pre-compiler

– Generates stub and skeletton using a file that describes the procedure(s)
interface(s) using a computer language independent syntax (RPCL: RPC
Language)

RPC : Remote Procedure Call

 Presentation layer called XDR (eXternal Data Representation)
– Network way of presenting primitive as well as structured data (arrays, sequences,

structures...)
– Independant of

 Computer architecture (little endian/big endian)
 Computer language (e.g. manages line/collumn order in C and Fortran arrays)
 OS specifics (ASCII, EBCDIC)

 Limitations:
– No object oriented concepts (encapsulation, inheritence, polymorphism)
– No advanced services: naming…

 Successors:
– RMI : mono language, multi platform
– CORBA : multi language, multi platform
– COM : multi language, mono platform (multi for DCOM)
– SOAP / .NET / web services : multi language, multi platform, web oriented

RMI: Remote Method Invocation

 Java based RPC
– Invocation of methods on distributed objects
– Uses all the language specifics => very simple to implement

 Tools
– Pre-compiler for stubs/skelettons: rmic
– Simple naming service: rmiregistry (you need to specify the server host)
– Activation: rmid

 Mono language and multi platform: from JVM to JVM
 Object oriented: uses serialization
 Dynamic: download class files for stubs and parameters through HTTP

(http://) or NFS/SMB (file:/)
 Somewhat secured: SecurityManager and .policy file

RMI: Remote Method Invocation

RMI: Remote Method Invocation

CORBA: Common Object Request Broker
Architecture

 Object oriented RPC + several services
– Language independent => uses IDL (Interface Definition Language)

 Tools
– IDL pre-compiler generates stubs and skeletons
– Advanced Naming service, trading service (yellow pages)
– Manages events, persistence, realtime, streaming...

 Multi-language and multi-platform
 Interoperability between ORBs: GIOP/IIOP

CORBA : Architecture (static only)

ORB

Client

Stub OA

Skeleton Skeleton

Servant Servant

Name Serv Trader other Services

Server

Direct Play

 Was in Direct X (3 – 9 - abandoned for 10 replaced
by XBox Live)

 Supported 2 architectures
– Totally connected peer to peer
– Client/Server

 Server manages group filtering

13

Direct Play : architectures

14

Direct Play

 Multiuser audio chat
 Interesting testing and validation tools

– Netmon (realtime monitoring)
– Dp8Sim (network simulator - limits bw adds network

losses)

15

Direct Play: layers architecture

16

Application

IPX SP Modem
SP

Serial
SP

API / Core

Transport Protocol

API
Calls

DirectPlay8

Call-
backs

IPv6
SP

IPv4
SP

TorqueNL

 From “Starsiege: TRIBES” and TRIBES 2 games
 FPS oriented Client/Server Architecture

– Manage data compression
 Bit wise (booleans, x-bits integers, several precisions for floating

point values)
– Several QoSes

 Ordered and reliable
 Reliable only
 Best effort
 Up to date resends (if it needs to resend messages it will send

them with updated date)
 As fast as possible (data are resent until acknowledged)

17

TorqueNL

 Other features:
– Interpolation/Extrapolation and Dead-Reckoning
– Client specific filtering (application can tell if an object is visible or

non visible for a client)
– Priorities for object updates
– Static data download at startup
– RPC
– Symmetric and Asymmetric Ciphering
– Firewall/NAT crossing
– Meta-server for finding servers

 C++ either GPL or commercial license
 http://www.opentnl.org/18

http://www.opentnl.org
http://www.opentnl.org

Raknet

 Client/Server or Peer to Peer with App Level MCast
 Multi-platform (Windows, Linux, Consoles)
 Features:

– Message compression
– Several QoSes (reliable, sequenced, ordered)
– Ciphering
– Auto patcher
– Voice chat
– Serialization

19

Raknet

– RPC
– network emulation (latency, limited bandwidth)
– Meta-server
– Firewall/NAT crossing

 C++ - Development license is free + commercial deployment
license

 http://www.rakkarsoft.com/

20

http://www.rakkarsoft.com
http://www.rakkarsoft.com

Unreal net code

 Unreal engine networking layer
 Client/server for FPS

– Object replication with priorities
– Several QoSes
– Non visible object filtering (linked to BSP trees)
– RPC
– Quantification for data compression
– Dead-reckoning

 Can be used with UnrealScript (free for mods)
 Unreal engine Commercial license for C++ source code
 http://unreal.epicgames.com/Network.htm21

http://unreal.epicgames.com/Network.htm
http://unreal.epicgames.com/Network.htm

HLA (High Level Architecture)

 US DoD
 Motivations

– Allow interoperability and reusability of existing and future
simulations

– Specifies several APIs and rules that can be implemented in several
ways

– Tries to solve DIS problems
 Availability

– Documentation/specs: http://hla.dmso.mil/
– Opensource version: http://savannah.nongnu.org/projects/certi/

22

http://hla.dmso.mil
http://hla.dmso.mil
http://savannah.nongnu.org/projects/certi/
http://savannah.nongnu.org/projects/certi/

HLA (High Level Architecture)

 Composed of:
– Federation rules: general principles that should be applied to

distributed simulation development in order to be HLA compatible
– RTI (Run-Time Infrastructure): middleware which manages the

distributed simulation
– OMT (Object Modeling Template) : generic object oriented model

used to define simulation objects and events

23

HLA (High Level Architecture)

 Architecture example (CERTI)

24

TCP Socket

Federate 1

libRTI

RTIA

RTIG

Federate 2

libRTI

RTIA

Federate n

libRTI

RTIA

WAN

LAN

UNIX Socket

HLA interface

HLA (High Level Architecture)

 libRTI
– Offers services to simulators (called federates)
– Federates communicate with each other through libRTI calls
– C++ (MaKRTI, CERTI), Java (pitchRTI)...

25

Federate code

Federate

LRC

Local RTI components (LRC)
offer services as specified in the IFSpec

Federate Ambassador

RTI Ambassador

Federates must define the abstract class called
FederateAmbassador

LRC main class is called
RTIAmbassador

HLA (High Level Architecture)

26

White federate
Fed. Code

LRC

Start your federate

2

Federates starts
the federation

3

Other federates
join the federation

Mauve federate
Fed. Code

LRC

Green federate
Fed. Code

LRC

RTIG
Start the RTI

1

RTIA

RTIA RTIA

RTIA is automatically
started

HLA (High Level Architecture)

 Other (commercial) RTIs
– pRTI from pitch.se
– Mäk RTI from Mäk (mak.com)
– Openskies (next slides)

27

Openskies

 Several APIs
– low level: HLA (RTI)
– IET (Import Export Table) HLA code generator (manages duplicated

objects updates)
– P2PS (Point to Point Switch Messaging Interface) allows objects to send

messages to other objects on any computer and even if they are not
currently created (buffered messages)

28

 4

OpenSkies APIs Used in Your Game

There are actually three levels of OpenSkies API you can use in

your communications. Each is a C++ API that is currently

supported on Win32 platforms. They are the HLA interface, the

IET interface, and the P2PS Interface. Government or military

agencies or their contractors who adhere to the HLA standard

would use that interface. Game developers are encouraged to use

the IET interface, as it is the simplest to use and has been

designed with game development in mind. The P2PS interface is

a point-to-point messaging API that is built on top of the IET

interface and can be used in conjunction with it.

Documentation for all of the Openskies APIs may be found at

http://www.openskies.net/download/download.html.

High Level Architecture (HLA) Interface

The lowest level API is modeled after the Department of

Defense’s HLA. This API architecture provides calls that register simulation objects and can push object

state change data. Simulation objects from other players in the network appear in your application as

simulation objects whose behavior is controlled by the owner’s message stream (as opposed to your

application’s physics models). See http://www.openskies.net/files/Openskies_HLA_Guide.pdf.

ImportExportTable (IET) Interface

A very simple and efficient interface, the IET development kit includes a simple application called

setup.exe that allow the game developer to specify the format for network-enabled objects. Setup.exe then

automatically generates the header (.h) and source (.cpp) files required for network communication.

Updating your object on the net is now as easy as:

object->Update();

This interface is the preferred mechanism for game developers because it is designed to be as simple as

possible without sacrificing capability. The IET interface is an object-oriented architecture that allows

objects to inherit networking functionality in much the same way C++ methods and variables are inherited.

See http://www.openskies.net/files/Openskies_IET_Guide.pdf.

Point-to-Point Switch (P2PS) Messaging Interface

This interface, which was build on top of the IET Interface allows the user to send messages from one

object to another by name. Messages can be sent to objects that have not yet been registered. In this case

the data is cached until an object with that name is (if ever) registered. Additionally, the relative location of

the 2 objects (whether they are on the same or different machines) is transparent to the application. Such an

interface greatly simplifies point-to-point communications between objects, allowing the developer to move

and/or combine code modules without having to modify the communication code. See

http://www.openskies.net/files/Openskies_P2PS_Guide.pdf.

Figure 1: Openskies APIs

Openskies

 Architectures
– Peer to peer or client/multi servers
– Dedicated Linux servers (specific Linux distribution)
– 3 types of servers

 LobbyManager (starting point - authenticates and directs to a
FedHost)

 FedHost (routes messages between federates)
– Each can manage up to 500 federates

 Game Server (manages the games specifics: AI...)
– One or several
– Coded like federates

29

 9

Figure 5: Federation with Game Servers

OpenSkies system does not implement your game server(s), but gives you the power to implement whatever

configuration or function in game servers that you want. Here are some possible game server setups:

• One game server doing all game logic

• Multiple game servers, each of which handles an geographical/spatial segment in the virtual game

universe

• Multiple game servers, each of which handles an aspect of play (e.g. time, score, mission

assignment , AI,…)

You may choose to implement virtually all network game logic on the game servers, with the player’s client

providing only interaction and game space display functions. Many developers prefer this approach

because it isolates game logic from would-be hackers, thereby reducing the vulnerability of the network

game to malicious acts. At the other end of the security spectrum, each game server may simply be an

automated player.

As indicated earlier, OpenSkies APIs are coded in C++ for Windows (95, 98, ME, NT, and 2000). To keep

things simple, they do not reference MS Foundation Libraries and stick to simple C++ and operating

systems calls. This means your game server will be one or more Windows applications with the standard

OpenSkies system. We will support your development game servers hosted on other platforms like Linux as

part of a qualified development partnership agreement.

Openskies

30

Openskies

– FedHost API allows the development of specific filters (culling)
 Can use a 2D grid to filter on position

31

 7

of client connections from one FedHost to another (for instance if a FedHost fails or is taken offline)

without any loss in game zone accessibility to the player.

Figure 3: Data being routed by FedHosts

Openskies

 C++ - Windows for federates
 Free dev license, commercial deployment license
 http://www.openskies.net/

32

http://www.openskies.net
http://www.openskies.net

Vega Prime (HLA/DIS mod)

 Vega Prime
– GUI app used to create realtime 3D simulators without coding
– Modular architecture (marine, atmospheric effects, infrared

rendering, radar...)
 HLA/DIS module

– Distributes the simulation using HLA and the RPR FOM (DIS
equivalent for HLA) or DIS

– No need to code
– Based on Mâk VR-Link (simulation distribution platform using DIS,

HLA or TENA)
 http://www.presagis.com/products/multigen_paradigm/

details/vegaprime/
33

Connecting Vega Prime to the DIS/HLA World
–

DIS/HLA for Vega Prime allows users to easily network Vega Prime
applications through LynX Prime to provide DIS and HLA operations
without any programming. Whether trying to achieve HLA compliance
or developing a Vega Prime simulation that must be distributed among
multiple machines or with multiple participants, DIS/HLA for Vega
Prime reduces time and effort.

 The module is built on MÄK Technologies’ best-selling VR-Link
networking toolkit , providing all the flexibility and networking exper-
tise expected from a MÄK product. The module comes with instant, out-
of-the-box interoperability with the RPR FOM. It’s flexible FOM-Agile
architecture makes using other FOMs easy. Through the FOM Mapper,
users can build a simulation once and have it switch between several
different federations.

 Through the embedded VR-Link API, users can access emissions
data, environmental data, logistics and more. Setting up a basic simula-
tion, including vehicle positions and orientations and network param-
eters, requires no coding. The module handles dead-reckoning, smooth-
ing, thresholding, heartbeats, conversions to and from coordinate sys-
tems required by DIS and the RPR FOM, and articulated parts.

Visualize
Reality DIS/HLA for Vega Prime™

 Features Benefits

Quickly and easily

Reduces the cost,

Flexible

All the features

System Requirements

VP02-MAK11V102

©2002 MultiGen-Paradigm, Inc., a Computer Associates company. All trademarks, tradenames, service marks and
logos referenced herein belong to their respective companies. By accepting and reviewing these materials you agree
to comply with all applicable import and export laws.

www.multigen-paradigm.com

http://www.presagis.com/products/multigen_paradigm/details/vegaprime/
http://www.presagis.com/products/multigen_paradigm/details/vegaprime/
http://www.presagis.com/products/multigen_paradigm/details/vegaprime/
http://www.presagis.com/products/multigen_paradigm/details/vegaprime/

Delta 3D

 Opensource “Clone” of Vega Prime
 Based on several toolkits

– Open Scene Graph (3D)
– Open Dynamics Engine (ODE - physics engine)
– Open AL (audio)

 High level classes
– Specific network Toolkit
– Encapsulates HLA (using a difficult to find RTI but can

(?) be ported to CERTI)
 GUI app for creating realtime 3D simulations

34

Multiverse

 Client/Server(s) complete environment targeted for
MMORPGs

– Manages quests, skills, combat, communication, inventory and
trading, crafting, game economy, AI, billing...

– Virtual world building tools
– World Browser (used to locate worlds)

 APIs for client and server customization
 Commercial license (10% of the game’s earning)
 http://multiverse.net/

35

http://multiverse.net
http://multiverse.net

Multiverse

36

Multiverse

 Client is written in C++ with Ogre3D and can be customized
using Python (GUI as well)

 Server is written in Java
 JDBC for persistence
 Plug-in architecture

– standard plug-ins (all are optional)
– API used to code specific plug-ins

37

Multiverse

38

Multiverse

 Tools
– ModelViewer
– Terrain Generator
– WorldBuilder

39

Virtools Multiuser Server

 Virtools is a realtime 3D application generator
 http://www.virtools.com/

40

http://www.virtools.com
http://www.virtools.com

Virtools Multiuser Server

 Virtools est un générateur d’applications 3D temps-
réel

 http://www.virtools.com/

41

Virtools Multiuser Server

 Features
– 3D object importation
– Animations management
– GUI created scripts (connected building blocks using data flow)
– SDK for building block or complete application development
– Web plugin

 Multiuser Server
– Manages distributed features
– Peer to peer (one client manages some server features) or client/

server
– Dead-reckoning
– Not that many details42

NeL

 MMO engine
 Developed for Ryzom (http://www.ryzom.com) and Ryzom

Ring (scenario editor for Ryzom)
 Several GPL libraries

– 3D, network, simple physics engine
 NelNet

– Proposes a typical “sharded” architecture
– Each shard must have an administration server and one or

more game servers

43

http://www.ryzom.com
http://www.ryzom.com
http://www.ryzom.com

NeL

– Most of the server code has to be developed
– NelNet only offers low-level libraries

 C++ for Linux (server) and multi-platform (clients)
 http://www.nevrax.org/

44

http://www.nevrax.org
http://www.nevrax.org

BigWorld

 Complete MMO engine
 Offers a complete MMO you can customize
 Licensed by several future MMOs (e.g. Stargate

Worlds, Okuto no Ken MMO...)
 Server side

– Dynamic load balancing
– Dynamic seamless architecture
– Fault tolerant
– Can manage several instances, shards or even games on

one cluster45

BigWorld

46

BigWorld

– Manage dynamic adding/removal of servers in the cluster
– Manages priorities and LOD (quantification ?) for messages for

optimally managing the available bandwidth between the cluster and
a client

– Monitoring tools
– C++ with Python customization

 Client side
– Windows and consoles
– Specific state of the art 3D engine

47

BigWorld

 Content production tools
– World editor: terrain, flora, simplified building creation.

Collaborative tool.
– Model editor: imports models and allow animations

editing
– Particles effects editor

 Commercial license
 http://www.bigworldtech.com/

48

http://www.bigworldtech.com
http://www.bigworldtech.com

Hero Engine

 Similar to BigWorld
 Similar tools but seem more interactive and collaborative
 Very little details on the client/server architecture
 Licensed by Bioware for their future MMO
 http://www.play.net/playdotnet/platform/home.asp

49

http://www.play.net/playdotnet/platform/home.asp
http://www.play.net/playdotnet/platform/home.asp

Conclusion

 Generic Middlewares
– Not really suited except for small scale applications (too much

reliability)
– Corba 3 and its extensions could become more interesting

 Specific Middlewares
– The more high level they are the more specific (FPS or MMO) and

expensive they are
– Not really used for commercial games (Unreal Engine is an

exception here)
– For mangas/books/films licenses ?
– Very interesting for developing your skills (for your first networked

game) and for research (if you don’t plan to commercialize your
research)50

